Branković, Zorica

Link to this page

Authority KeyName Variants
orcid::0000-0001-7231-8235
  • Branković, Zorica (174)
Projects
Zero- to Three-Dimensional Nanostructures for Application in Electronics and Renewable Energy Sources: Synthesis, Characterization and Processing Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200053 (University of Belgrade, Institute for Multidisciplinary Research)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200135 (University of Belgrade, Faculty of Technology and Metallurgy) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200053 (University of Belgrade, Institute for Multidisciplinary Research) (RS-200053)
Croatian Science Foundation [UIP-2014-09-8276] info:eu-repo/grantAgreement/MESTD/inst-2020/200053/RS
Agrobiodiversity and land-use change in Serbia: an integrated biodiversity assessment of key functional groups of arthropods and plant pathogens Modulation of antioxidative metabolism in plants for improvement of plant abiotic stress tolerance and identification of new biomarkers for application in remediation and monitoring of degraded biotopes
info:eu-repo/grantAgreement/MESTD/Integrated and Interdisciplinary Research (IIR or III)/45007/RS Savremena metal-oksidna elektrokeramika i tanki filmovi
Grant KK.01.1.1.02.0013 Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200358 (BioSense Institute)
Nanostrukturni čvrsti rastvori za primenu u elektronici i alternativnim izvorima energije Ministry of Science and Environmental Protection of the Republic of SerbiaMinistry of Education, Science & Technological Development, Serbia
NSC cluster at IJS (Ljubljana) Slovenian Research AgencySlovenian Research Agency - Slovenia [P2-0084]
Slovenian Research AgencySlovenian Research Agency - Slovenia [P2-0348] Advanced Materials and Manufacturing Processes Institute at the University of North Texas Seed Research Project
Bilateral cooperation between the Republic of Serbia and the Republic of Slovenia through Project "Perovskite-type transition metal oxides with multiferroic properties" [651-03-1251/2012-09/21] Bilateral Project between the Republic of Serbia and Republic of Slovenia [451-03-3095/2014-09-32]
bilateral project Croatia - Serbia "Synthesis and photocatalytic properties of nanostructured materials based on TiO2" CNPqConselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPQ)
COST ActionEuropean Cooperation in Science and Technology (COST) [MP0904] COST Action grant number CA17123 - MAGNETOFON
Croatian Association of Crystallographers Croatian Science Foundation [IP-2018-01-2730]
Croatian Science Foundation project IP-2018–01–2730 Cryogenic Centre at the Institute of Physics - KaCIF co-financed by the Croatian Government and the European Union through the European Regional Development Fund-Competitiveness and Cohesion Operational Programme (Grant No. KK.01.1.1.02.0012)
ECR conspire, SERB, Government of India [ECR/2016/001404] European UnionEuropean Commission [823717 ESTEEM3]

Author's Bibliography

Electrical and sensing properties of indium-doped barium cerate

Malešević, Aleksandar; Radojković, Aleksandar; Žunić, Milan; Savic, Slavica; Perać, Sanja; Branković, Zorica; Branković, Goran

(Elsevier Ltd, 2023)

TY  - JOUR
AU  - Malešević, Aleksandar
AU  - Radojković, Aleksandar
AU  - Žunić, Milan
AU  - Savic, Slavica
AU  - Perać, Sanja
AU  - Branković, Zorica
AU  - Branković, Goran
PY  - 2023
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2299
AB  - Systematic analysis of electrical characteristics of BaCe0.75In0.25O3-δ (BCI25) sintered sample was performed in a
dry and a wet argon atmosphere in the 250 ◦C–700 ◦C temperature range. The water vapor sensing properties of
BCI25 porous film and its response and recovery times were investigated under different conditions of temperature
and water vapor concentration. The 30 μm thick film obtained from the powder calcined at 1050 ◦C
exhibited sensitivity comparable to that of the sintered sample with a significantly shorter response and recovery
times. While the sensitivity of the film gradually decreased with a decrease in partial pressure of water vapor (p
(H2O)), a noticeable sensitivity was still observed at p(H2O) of 200 Pa. Decrease in conductivity depended
logarithmically on the partial pressure of water with the slope of 0.52 that is close to the theoretical value. After
several cycles, the reusability test proved an almost unchanged ratio between the impedance value in the dry and
the wet Ar atmosphere (p(H2O) = 2.34 kPa), which implied that BCI25, having good stability and sensitivity, is a
promising high-temperature humidity sensor.
PB  - Elsevier Ltd
PB  - Techna Group S.r.l.
T2  - Ceramics International
T1  - Electrical and sensing properties of indium-doped barium cerate
EP  - 15679
SP  - 15673
VL  - 49
DO  - 10.1016/j.ceramint.2023.01.159
ER  - 
@article{
author = "Malešević, Aleksandar and Radojković, Aleksandar and Žunić, Milan and Savic, Slavica and Perać, Sanja and Branković, Zorica and Branković, Goran",
year = "2023",
abstract = "Systematic analysis of electrical characteristics of BaCe0.75In0.25O3-δ (BCI25) sintered sample was performed in a
dry and a wet argon atmosphere in the 250 ◦C–700 ◦C temperature range. The water vapor sensing properties of
BCI25 porous film and its response and recovery times were investigated under different conditions of temperature
and water vapor concentration. The 30 μm thick film obtained from the powder calcined at 1050 ◦C
exhibited sensitivity comparable to that of the sintered sample with a significantly shorter response and recovery
times. While the sensitivity of the film gradually decreased with a decrease in partial pressure of water vapor (p
(H2O)), a noticeable sensitivity was still observed at p(H2O) of 200 Pa. Decrease in conductivity depended
logarithmically on the partial pressure of water with the slope of 0.52 that is close to the theoretical value. After
several cycles, the reusability test proved an almost unchanged ratio between the impedance value in the dry and
the wet Ar atmosphere (p(H2O) = 2.34 kPa), which implied that BCI25, having good stability and sensitivity, is a
promising high-temperature humidity sensor.",
publisher = "Elsevier Ltd, Techna Group S.r.l.",
journal = "Ceramics International",
title = "Electrical and sensing properties of indium-doped barium cerate",
pages = "15679-15673",
volume = "49",
doi = "10.1016/j.ceramint.2023.01.159"
}
Malešević, A., Radojković, A., Žunić, M., Savic, S., Perać, S., Branković, Z.,& Branković, G.. (2023). Electrical and sensing properties of indium-doped barium cerate. in Ceramics International
Elsevier Ltd., 49, 15673-15679.
https://doi.org/10.1016/j.ceramint.2023.01.159
Malešević A, Radojković A, Žunić M, Savic S, Perać S, Branković Z, Branković G. Electrical and sensing properties of indium-doped barium cerate. in Ceramics International. 2023;49:15673-15679.
doi:10.1016/j.ceramint.2023.01.159 .
Malešević, Aleksandar, Radojković, Aleksandar, Žunić, Milan, Savic, Slavica, Perać, Sanja, Branković, Zorica, Branković, Goran, "Electrical and sensing properties of indium-doped barium cerate" in Ceramics International, 49 (2023):15673-15679,
https://doi.org/10.1016/j.ceramint.2023.01.159 . .
1

Tailoring of BaCe0.9Y0.1O3-d Electrolyte Properties by Co-Doping

Radojković, Aleksandar; Žunić, Milan; Savić, Slavica; Perać, Sanja; Branković, Zorica; Branković, Goran

(Spectus Meeting World, 2023)

TY  - CONF
AU  - Radojković, Aleksandar
AU  - Žunić, Milan
AU  - Savić, Slavica
AU  - Perać, Sanja
AU  - Branković, Zorica
AU  - Branković, Goran
PY  - 2023
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2343
AB  - BaCe0.9Y0.1O3–δ has been known as one of the best proton conducting electrolyte, which enables its application in intermediate-temperature solid oxide fuel cells (IT-SOFC) operating between 500 °C and 700 °C. The main disadvantage of this material is its instability in a CO2-rich atmosphere that limits its application with respect to fuel selection. Therefore, many attempts has been made to improve its stability by replacing yttrium with other dopants, or by co-doping.
In this study, we compared BaCe0.9Y0.1O3–δ and BaCe0.85Y0.1M0.05O3–δ (M = {In, Zr, Nb}) electrolytes by taking into consideration the dopant properties (primarily the valence, electronegativity and ionic radius) and how they influenced the microstructure, conductivity and chemical stability of doped BaCeO3. The samples were synthesized by the citric-nitric autocombustion method. BaCe0.85Y0.1In0.05O3–δ was sintered at 1400 °C for 5 h in air, while the temperature of 1550 °C was required for the other materials to complete the sintering. This makes the doping with In a preferable method since sintering temperatures above 1500 °C can lead to a certain materials degradation resulting in BaO loss. The total conductivities (σ) measured at 700 °C in wet hydrogen decreased in the following order:
BaCe0.9Y0.1O3–δ > BaCe0.85Y0.1Zr0.05O3–δ > BaCe0.85Y0.1Nb0.05O3–δ > BaCe0.85Y0.1In0.05O3–δ. By comparing the stability of the ceramics exposed to a 100% CO2 atmosphere at 700 °C for 5 h and examined by X-ray analysis, it was observed that only BaCe0.85Y0.1In0.05O3–δ could sustain the aggressive environment. The exposed sample contained only traces of secondary phases, while the other compositions were partially or significantly decomposed. By taking into account the values of the Goldschmidt tolerance factor (t) and dopant electronegativity
PB  - Spectus Meeting World
C3  - 7th World Congress on Materials Science & Engineering
T1  - Tailoring of BaCe0.9Y0.1O3-d Electrolyte Properties by Co-Doping
IS  - 49
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2343
ER  - 
@conference{
author = "Radojković, Aleksandar and Žunić, Milan and Savić, Slavica and Perać, Sanja and Branković, Zorica and Branković, Goran",
year = "2023",
abstract = "BaCe0.9Y0.1O3–δ has been known as one of the best proton conducting electrolyte, which enables its application in intermediate-temperature solid oxide fuel cells (IT-SOFC) operating between 500 °C and 700 °C. The main disadvantage of this material is its instability in a CO2-rich atmosphere that limits its application with respect to fuel selection. Therefore, many attempts has been made to improve its stability by replacing yttrium with other dopants, or by co-doping.
In this study, we compared BaCe0.9Y0.1O3–δ and BaCe0.85Y0.1M0.05O3–δ (M = {In, Zr, Nb}) electrolytes by taking into consideration the dopant properties (primarily the valence, electronegativity and ionic radius) and how they influenced the microstructure, conductivity and chemical stability of doped BaCeO3. The samples were synthesized by the citric-nitric autocombustion method. BaCe0.85Y0.1In0.05O3–δ was sintered at 1400 °C for 5 h in air, while the temperature of 1550 °C was required for the other materials to complete the sintering. This makes the doping with In a preferable method since sintering temperatures above 1500 °C can lead to a certain materials degradation resulting in BaO loss. The total conductivities (σ) measured at 700 °C in wet hydrogen decreased in the following order:
BaCe0.9Y0.1O3–δ > BaCe0.85Y0.1Zr0.05O3–δ > BaCe0.85Y0.1Nb0.05O3–δ > BaCe0.85Y0.1In0.05O3–δ. By comparing the stability of the ceramics exposed to a 100% CO2 atmosphere at 700 °C for 5 h and examined by X-ray analysis, it was observed that only BaCe0.85Y0.1In0.05O3–δ could sustain the aggressive environment. The exposed sample contained only traces of secondary phases, while the other compositions were partially or significantly decomposed. By taking into account the values of the Goldschmidt tolerance factor (t) and dopant electronegativity",
publisher = "Spectus Meeting World",
journal = "7th World Congress on Materials Science & Engineering",
title = "Tailoring of BaCe0.9Y0.1O3-d Electrolyte Properties by Co-Doping",
number = "49",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2343"
}
Radojković, A., Žunić, M., Savić, S., Perać, S., Branković, Z.,& Branković, G.. (2023). Tailoring of BaCe0.9Y0.1O3-d Electrolyte Properties by Co-Doping. in 7th World Congress on Materials Science & Engineering
Spectus Meeting World.(49).
https://hdl.handle.net/21.15107/rcub_rimsi_2343
Radojković A, Žunić M, Savić S, Perać S, Branković Z, Branković G. Tailoring of BaCe0.9Y0.1O3-d Electrolyte Properties by Co-Doping. in 7th World Congress on Materials Science & Engineering. 2023;(49).
https://hdl.handle.net/21.15107/rcub_rimsi_2343 .
Radojković, Aleksandar, Žunić, Milan, Savić, Slavica, Perać, Sanja, Branković, Zorica, Branković, Goran, "Tailoring of BaCe0.9Y0.1O3-d Electrolyte Properties by Co-Doping" in 7th World Congress on Materials Science & Engineering, no. 49 (2023),
https://hdl.handle.net/21.15107/rcub_rimsi_2343 .

TUNING OF FERROELECTRIC PROPERTIES OF BiFeO3 CERAMICS BY CATION SUBSTITUTIONS AT Bi-SITE AND Fe-SITE

Radojković, Aleksandar; Luković Golić, Danijela; JOVIĆ ORSINI, Nataša; Ćirković, Jovana; Nikolić, Nenad; Branković, Zorica; Branković, Goran

(Društvo za keramičke materijale Srbije, 2023)

TY  - CONF
AU  - Radojković, Aleksandar
AU  - Luković Golić, Danijela
AU  - JOVIĆ ORSINI, Nataša
AU  - Ćirković, Jovana
AU  - Nikolić, Nenad
AU  - Branković, Zorica
AU  - Branković, Goran
PY  - 2023
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2386
AB  - In this study, we tried various cation substitutions at Bi-site (La3+, Eu3+) and Fesite (Nb5+
, Zr4+
) to explore their possible synergism and improvement of the
ferroelectric properties of bismuth ferrite. The cations with higher valence ought to
suppress the formation of structural defects during syntheses, such as oxygen and
bismuth vacancies. These defects are responsible for high leakage currents and low
breakdown voltages characteristic of pure BiFeO3. On the other hand, rare earth
cations at the Bi-site usually enable densification of the ceramics at a broader range
of temperatures, preventing bismuth loss and formation of defects and secondary
phases during sintering. However, dopant concentrations above 10–15 mol% may
give rise to a transition from polar, rhombohedral (R3c) to non-polar, orthorhombic
(Pnma) symmetry.
Thus, we synthesized pure and selected compositions doped BiFeO3 by a hydroevaporation method and determined the optimal calcination temperature by thermal
analyses of the precursor powders. Then we characterized ceramics samples using
X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and
polarization techniques. Although only 1 mol% Nb5+ decreased the leakage current,
it surprisingly deteriorated the ferroelectric properties of BiFeO3. Similar effect
exhibited the samples containing Zr4+ that showed no improvement compared with
undoped bismuth ferrite. On the contrary, La3+ and Eu3+ (incorporated at the Bi-site)
improved the ferroelectric properties as their concentrations increased, whereby the
samples doped with 15 mol% La exhibited higher remnant electric polarizations at
observed electric fields. The highest remnant electric polarization of 31.9 µC/cm2
at 150 kV/cm, was measured for Bi0.85La0.15Fe0.998Zr0.002O3, indicating the synergetic
effect of La3+ and Zr4+, which is limited to low Zr4+ concentrations.
PB  - Društvo za keramičke materijale Srbije
C3  - 7th Conference of the Serbian Ceramic Society
T1  - TUNING OF FERROELECTRIC PROPERTIES OF BiFeO3 CERAMICS BY CATION SUBSTITUTIONS AT Bi-SITE AND Fe-SITE
SP  - 79
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2386
ER  - 
@conference{
author = "Radojković, Aleksandar and Luković Golić, Danijela and JOVIĆ ORSINI, Nataša and Ćirković, Jovana and Nikolić, Nenad and Branković, Zorica and Branković, Goran",
year = "2023",
abstract = "In this study, we tried various cation substitutions at Bi-site (La3+, Eu3+) and Fesite (Nb5+
, Zr4+
) to explore their possible synergism and improvement of the
ferroelectric properties of bismuth ferrite. The cations with higher valence ought to
suppress the formation of structural defects during syntheses, such as oxygen and
bismuth vacancies. These defects are responsible for high leakage currents and low
breakdown voltages characteristic of pure BiFeO3. On the other hand, rare earth
cations at the Bi-site usually enable densification of the ceramics at a broader range
of temperatures, preventing bismuth loss and formation of defects and secondary
phases during sintering. However, dopant concentrations above 10–15 mol% may
give rise to a transition from polar, rhombohedral (R3c) to non-polar, orthorhombic
(Pnma) symmetry.
Thus, we synthesized pure and selected compositions doped BiFeO3 by a hydroevaporation method and determined the optimal calcination temperature by thermal
analyses of the precursor powders. Then we characterized ceramics samples using
X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and
polarization techniques. Although only 1 mol% Nb5+ decreased the leakage current,
it surprisingly deteriorated the ferroelectric properties of BiFeO3. Similar effect
exhibited the samples containing Zr4+ that showed no improvement compared with
undoped bismuth ferrite. On the contrary, La3+ and Eu3+ (incorporated at the Bi-site)
improved the ferroelectric properties as their concentrations increased, whereby the
samples doped with 15 mol% La exhibited higher remnant electric polarizations at
observed electric fields. The highest remnant electric polarization of 31.9 µC/cm2
at 150 kV/cm, was measured for Bi0.85La0.15Fe0.998Zr0.002O3, indicating the synergetic
effect of La3+ and Zr4+, which is limited to low Zr4+ concentrations.",
publisher = "Društvo za keramičke materijale Srbije",
journal = "7th Conference of the Serbian Ceramic Society",
title = "TUNING OF FERROELECTRIC PROPERTIES OF BiFeO3 CERAMICS BY CATION SUBSTITUTIONS AT Bi-SITE AND Fe-SITE",
pages = "79",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2386"
}
Radojković, A., Luković Golić, D., JOVIĆ ORSINI, N., Ćirković, J., Nikolić, N., Branković, Z.,& Branković, G.. (2023). TUNING OF FERROELECTRIC PROPERTIES OF BiFeO3 CERAMICS BY CATION SUBSTITUTIONS AT Bi-SITE AND Fe-SITE. in 7th Conference of the Serbian Ceramic Society
Društvo za keramičke materijale Srbije., 79.
https://hdl.handle.net/21.15107/rcub_rimsi_2386
Radojković A, Luković Golić D, JOVIĆ ORSINI N, Ćirković J, Nikolić N, Branković Z, Branković G. TUNING OF FERROELECTRIC PROPERTIES OF BiFeO3 CERAMICS BY CATION SUBSTITUTIONS AT Bi-SITE AND Fe-SITE. in 7th Conference of the Serbian Ceramic Society. 2023;:79.
https://hdl.handle.net/21.15107/rcub_rimsi_2386 .
Radojković, Aleksandar, Luković Golić, Danijela, JOVIĆ ORSINI, Nataša, Ćirković, Jovana, Nikolić, Nenad, Branković, Zorica, Branković, Goran, "TUNING OF FERROELECTRIC PROPERTIES OF BiFeO3 CERAMICS BY CATION SUBSTITUTIONS AT Bi-SITE AND Fe-SITE" in 7th Conference of the Serbian Ceramic Society (2023):79,
https://hdl.handle.net/21.15107/rcub_rimsi_2386 .

The influence of dopant concentration and sintering parameters on properties of Sb-doped BaSnO3 ceramics

Mitrović, Jelena; Počuča-Nešić, Milica; Branković, Zorica; Branković, Goran

(2023)

TY  - GEN
AU  - Mitrović, Jelena
AU  - Počuča-Nešić, Milica
AU  - Branković, Zorica
AU  - Branković, Goran
PY  - 2023
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2219
AB  - The influence of dopant concentration and sintering parameters on properties of Sb-doped BaSnO3 ceramics
	Jelena Mitrović1, Milica Počuča-Nešić1, Zorica Branković1, Goran Branković1	
1Institute for Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
In recent years, the modern industry and technology development has focused on non-magnetic, non-inductive, and electroconductive materials that can be used in conditions unfavorable for metals and alloys, such as constant high voltage, current and energy, with a particular emphasis on operating in acidic and humid environments. These conditions could be satisfied using chemically inert and thermally stable ceramic resistors with linear current-voltage (I-U) characteristic and low and almost constant electrical resistivity in the wide temperature range. Barium stannate (BaSnO3, BSO) is perovskite-type oxide with almost ideal cubic crystal structure, good thermal and chemical stability. Undoped BSO exhibits semiconductor behviour, but doping with an appropriate concentration of antimony can lead to changes in the electrical properties of BSO, making its metallic-like conductor. 
In this study, we investigate the influence of antimony concentration and sintering parameters on properties of antimony-doped barium stannate, BaSn1-xSbxO3 (BSSO, x = 0,00; 0,04; 0,06; 0,08 and 0,10) to obtain conductive electroceramic samples with linear current-voltage (I-U) characteristic and constant electrical resistivity in the temperature range of 25 °C to 150 °C. Ceramic samples were obtained by three different sintering techniques conventional, spark plasma and cold sintering.
	XRD analysis confirmed the existence of single-phase cubic BaSnO3 in all conventionally sintered samples at 1600 °C for 3 h, and also in spark plasma sintered samples at 1100 °C for 5 min. However, the spark plasma sintering at 1200 °C for 5 min led to the formation of secondary phase, tetragonal Ba2SnO4 in BSSO samples, whose content is significantly decreased by Sb doping. On the other hand, XRD analysis revealed the presence of unreacted starting components, SnO2 and BaCO3 in cold sintered BaSn0.92Sb0.08O3 sample (310 °C for 5 min, 20 wt.% 1 M acetic acid). The presence of low angle grain boundaries (LAGBs) was observed in conventionally (1600 °C for 3 h) and spark plasma sintered (1200 °C for 5 min) samples with x = 0.08. The results of DC (I-U characteristic) and AC (Impedance spectroscopy) measurements confirmed the semiconducting properties of all BSSO sample, except the spark plasma sintered BaSn0.92Sb0.08O3 (1200 °C for 5 min) sample. Metallic-like behavior of this sample is manifested through the linear I-U characteristic and low electrical resistivity, which remained almost constant in the investigated temperature range, due to the loss of potential barriers at the grain boundary region as a consequence of LAGBs present in BaSn0.92Sb0.08O3 ceramic sample.
T2  - Shanghai Institute of Ceramics, Chinese Academy of Sciences
T1  - The influence of dopant concentration and sintering parameters on properties of Sb-doped BaSnO3 ceramics
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2219
ER  - 
@misc{
author = "Mitrović, Jelena and Počuča-Nešić, Milica and Branković, Zorica and Branković, Goran",
year = "2023",
abstract = "The influence of dopant concentration and sintering parameters on properties of Sb-doped BaSnO3 ceramics
	Jelena Mitrović1, Milica Počuča-Nešić1, Zorica Branković1, Goran Branković1	
1Institute for Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
In recent years, the modern industry and technology development has focused on non-magnetic, non-inductive, and electroconductive materials that can be used in conditions unfavorable for metals and alloys, such as constant high voltage, current and energy, with a particular emphasis on operating in acidic and humid environments. These conditions could be satisfied using chemically inert and thermally stable ceramic resistors with linear current-voltage (I-U) characteristic and low and almost constant electrical resistivity in the wide temperature range. Barium stannate (BaSnO3, BSO) is perovskite-type oxide with almost ideal cubic crystal structure, good thermal and chemical stability. Undoped BSO exhibits semiconductor behviour, but doping with an appropriate concentration of antimony can lead to changes in the electrical properties of BSO, making its metallic-like conductor. 
In this study, we investigate the influence of antimony concentration and sintering parameters on properties of antimony-doped barium stannate, BaSn1-xSbxO3 (BSSO, x = 0,00; 0,04; 0,06; 0,08 and 0,10) to obtain conductive electroceramic samples with linear current-voltage (I-U) characteristic and constant electrical resistivity in the temperature range of 25 °C to 150 °C. Ceramic samples were obtained by three different sintering techniques conventional, spark plasma and cold sintering.
	XRD analysis confirmed the existence of single-phase cubic BaSnO3 in all conventionally sintered samples at 1600 °C for 3 h, and also in spark plasma sintered samples at 1100 °C for 5 min. However, the spark plasma sintering at 1200 °C for 5 min led to the formation of secondary phase, tetragonal Ba2SnO4 in BSSO samples, whose content is significantly decreased by Sb doping. On the other hand, XRD analysis revealed the presence of unreacted starting components, SnO2 and BaCO3 in cold sintered BaSn0.92Sb0.08O3 sample (310 °C for 5 min, 20 wt.% 1 M acetic acid). The presence of low angle grain boundaries (LAGBs) was observed in conventionally (1600 °C for 3 h) and spark plasma sintered (1200 °C for 5 min) samples with x = 0.08. The results of DC (I-U characteristic) and AC (Impedance spectroscopy) measurements confirmed the semiconducting properties of all BSSO sample, except the spark plasma sintered BaSn0.92Sb0.08O3 (1200 °C for 5 min) sample. Metallic-like behavior of this sample is manifested through the linear I-U characteristic and low electrical resistivity, which remained almost constant in the investigated temperature range, due to the loss of potential barriers at the grain boundary region as a consequence of LAGBs present in BaSn0.92Sb0.08O3 ceramic sample.",
journal = "Shanghai Institute of Ceramics, Chinese Academy of Sciences",
title = "The influence of dopant concentration and sintering parameters on properties of Sb-doped BaSnO3 ceramics",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2219"
}
Mitrović, J., Počuča-Nešić, M., Branković, Z.,& Branković, G.. (2023). The influence of dopant concentration and sintering parameters on properties of Sb-doped BaSnO3 ceramics. in Shanghai Institute of Ceramics, Chinese Academy of Sciences.
https://hdl.handle.net/21.15107/rcub_rimsi_2219
Mitrović J, Počuča-Nešić M, Branković Z, Branković G. The influence of dopant concentration and sintering parameters on properties of Sb-doped BaSnO3 ceramics. in Shanghai Institute of Ceramics, Chinese Academy of Sciences. 2023;.
https://hdl.handle.net/21.15107/rcub_rimsi_2219 .
Mitrović, Jelena, Počuča-Nešić, Milica, Branković, Zorica, Branković, Goran, "The influence of dopant concentration and sintering parameters on properties of Sb-doped BaSnO3 ceramics" in Shanghai Institute of Ceramics, Chinese Academy of Sciences (2023),
https://hdl.handle.net/21.15107/rcub_rimsi_2219 .

Quantum sensors for gas mixture detection

Branković, Goran; Branković, Zorica; Vojisavljević, Katarina; Malešević, Aleksandar; Marinković Stanojević, Zorica; Počuča-Nešić, Milica; Mitrović, Jelena; Rostovtsev, Yuri

(University of Belgrade, Institute for Multidisciplinary Research, 2023)

TY  - CONF
AU  - Branković, Goran
AU  - Branković, Zorica
AU  - Vojisavljević, Katarina
AU  - Malešević, Aleksandar
AU  - Marinković Stanojević, Zorica
AU  - Počuča-Nešić, Milica
AU  - Mitrović, Jelena
AU  - Rostovtsev, Yuri
PY  - 2023
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2088
AB  - Numerous methods have been utilized for molecular detection, including optical, calorimetric, acoustic, and techniques based on changes in electrical properties, such as metal oxide semiconductor sensors [1,2]. Recent research endeavors have led to a significant rise in sensitivity, detecting parts per billion (ppb) [3], but the challenges of selectivity and cross-sensing remain crucial areas of investigation. Developing a gas sensor with high selectivity to efficiently analyze multi-gas mixtures would be of great significance, with potential applications in various fields such as technology, environmental control, biology, and medicine.
Quantum sensors are a promising new technology for the detection of gas mixtures. They offer a number of advantages over traditional methods, including high sensitivity, selectivity, and response time. In the presentation, we propose a new method based on the resonant interaction of dipole molecules with ac fields, in the presence of a dc electric and magnetic field that creates Zeeman and Stark splitting of molecular levels specific to certain molecules, ensuring selectivity [4].
In this talk, we present some preliminary experimental results obtained for the molecule NO on the use of quantum sensors for the detection of gas mixtures. Our results demonstrate the potential of quantum sensors for a variety of applications in gas sensing. We believe that quantum sensors have the potential to revolutionize the field of gas sensing.
1. X. Liu, et al. Sensors (Basel), 12 (2012) 9635–9665.
2. S. Lakkis, R. Younes, Y. Alayli, M. Sawan, Sensor Review, 34 (2014) 24–35.
3. J.-H. Lee, J.-Y. Kim, J.-H. Kim, S. S. Kim, Sensors (Basel), 19 (2019) 726.
4. Z. Branković, Y. Rostovtsev, Sci. Rep., 10 (2020) 1537.
PB  - University of Belgrade, Institute for Multidisciplinary Research
C3  - 7th Conference of the Serbian Society for Ceramic Materials, 7CSCS-2023, June 14-16, 2023, Belgrade, Serbia
T1  - Quantum sensors for gas mixture detection
SP  - 43
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2088
ER  - 
@conference{
author = "Branković, Goran and Branković, Zorica and Vojisavljević, Katarina and Malešević, Aleksandar and Marinković Stanojević, Zorica and Počuča-Nešić, Milica and Mitrović, Jelena and Rostovtsev, Yuri",
year = "2023",
abstract = "Numerous methods have been utilized for molecular detection, including optical, calorimetric, acoustic, and techniques based on changes in electrical properties, such as metal oxide semiconductor sensors [1,2]. Recent research endeavors have led to a significant rise in sensitivity, detecting parts per billion (ppb) [3], but the challenges of selectivity and cross-sensing remain crucial areas of investigation. Developing a gas sensor with high selectivity to efficiently analyze multi-gas mixtures would be of great significance, with potential applications in various fields such as technology, environmental control, biology, and medicine.
Quantum sensors are a promising new technology for the detection of gas mixtures. They offer a number of advantages over traditional methods, including high sensitivity, selectivity, and response time. In the presentation, we propose a new method based on the resonant interaction of dipole molecules with ac fields, in the presence of a dc electric and magnetic field that creates Zeeman and Stark splitting of molecular levels specific to certain molecules, ensuring selectivity [4].
In this talk, we present some preliminary experimental results obtained for the molecule NO on the use of quantum sensors for the detection of gas mixtures. Our results demonstrate the potential of quantum sensors for a variety of applications in gas sensing. We believe that quantum sensors have the potential to revolutionize the field of gas sensing.
1. X. Liu, et al. Sensors (Basel), 12 (2012) 9635–9665.
2. S. Lakkis, R. Younes, Y. Alayli, M. Sawan, Sensor Review, 34 (2014) 24–35.
3. J.-H. Lee, J.-Y. Kim, J.-H. Kim, S. S. Kim, Sensors (Basel), 19 (2019) 726.
4. Z. Branković, Y. Rostovtsev, Sci. Rep., 10 (2020) 1537.",
publisher = "University of Belgrade, Institute for Multidisciplinary Research",
journal = "7th Conference of the Serbian Society for Ceramic Materials, 7CSCS-2023, June 14-16, 2023, Belgrade, Serbia",
title = "Quantum sensors for gas mixture detection",
pages = "43",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2088"
}
Branković, G., Branković, Z., Vojisavljević, K., Malešević, A., Marinković Stanojević, Z., Počuča-Nešić, M., Mitrović, J.,& Rostovtsev, Y.. (2023). Quantum sensors for gas mixture detection. in 7th Conference of the Serbian Society for Ceramic Materials, 7CSCS-2023, June 14-16, 2023, Belgrade, Serbia
University of Belgrade, Institute for Multidisciplinary Research., 43.
https://hdl.handle.net/21.15107/rcub_rimsi_2088
Branković G, Branković Z, Vojisavljević K, Malešević A, Marinković Stanojević Z, Počuča-Nešić M, Mitrović J, Rostovtsev Y. Quantum sensors for gas mixture detection. in 7th Conference of the Serbian Society for Ceramic Materials, 7CSCS-2023, June 14-16, 2023, Belgrade, Serbia. 2023;:43.
https://hdl.handle.net/21.15107/rcub_rimsi_2088 .
Branković, Goran, Branković, Zorica, Vojisavljević, Katarina, Malešević, Aleksandar, Marinković Stanojević, Zorica, Počuča-Nešić, Milica, Mitrović, Jelena, Rostovtsev, Yuri, "Quantum sensors for gas mixture detection" in 7th Conference of the Serbian Society for Ceramic Materials, 7CSCS-2023, June 14-16, 2023, Belgrade, Serbia (2023):43,
https://hdl.handle.net/21.15107/rcub_rimsi_2088 .

Correlation between the microstructure and electrical properties of Sb-doped BaSnO3 ceramics

Mitrović, Jelena; Počuča-Nešić, Milica; Malešević, Aleksandar; Branković, Zorica; Vojisavljević, Katarina; Savić, Slavica; Ribić, Vesna; Drev, Sandra; Podlogar, Matejka; Bernik, Slavko; Rapljenović, Željko; Ivek, Tomislav; Branković, Goran

(University of Belgrade, Institute for Multidisciplinary Research, 2023)

TY  - GEN
AU  - Mitrović, Jelena
AU  - Počuča-Nešić, Milica
AU  - Malešević, Aleksandar
AU  - Branković, Zorica
AU  - Vojisavljević, Katarina
AU  - Savić, Slavica
AU  - Ribić, Vesna
AU  - Drev, Sandra
AU  - Podlogar, Matejka
AU  - Bernik, Slavko
AU  - Rapljenović, Željko
AU  - Ivek, Tomislav
AU  - Branković, Goran
PY  - 2023
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2085
AB  - The non-magnetic, non-inductive electroconductive materials with linear current-voltage characteristic and low and almost constant electrical resistivity in the wide temperature range could be used in conditions unfavorable for metals and alloys. Particular emphasis is placed on the performance and endurance of these materials in conditions at constant high voltage, current, and energy, as well as operating in acidic and humid environmental conditions.
The aim of this work was to investigate the influence of antimony concentration and sintering parameters on the structure, microstructure, and electrical properties of antimony-doped barium stannate, BaSn1-xSbxO3 (BSSO, x = 0,00; 0,04; 0,06; 0,08 and 0,10) to obtain conductive electroceramic samples with linear current-voltage (I- U) characteristics and low electrical resistivity. For this purpose three different sintering techniques were used: conventional, spark plasma and cold sintering.
According to the X-ray diffraction (XRD) analysis, single-phase ceramic mater- ials with cubic BaSnO3 structure were obtained by conventional sintering at 1600 °C for 3 h and spark plasma sintering at 1100 °C for 5 min. Raising the spark plasma sintering temperature to 1200 °C induced the formation of Ba-rich secondary phase, Ba2SnO4. XRD analysis confirmed the presence of unreacted SnO2 and BaCO3 in cold sintered BaSn0.92Sb0.08O3 sample (310 °C for 5 min, 20 wt.% 1 M acetic acid). Scanning electron microscopy (SEM) indicates a significant decrease in grain size upon doping, regardless of the sintering technique. High-resolution transmission electron microscopy (HRTEM) revealed the presence of low angle grain boundaries (LAGBs) in conventionally and spark plasma sintered (1200 °C for 5 min) samples with x = 0.08. The results of electrical measurements confirmed the semiconducting properties of all BSSO, except the spark plasma sintered BaSn0.92Sb0.08O3 (1200 °C for 5 min) sample. This sample showed linear current-voltage characteristic, the lowest and almost constant electrical resistivity in the temperature range of 25–150
°C resulting from the loss of potential barriers at grain boundaries due to the large fraction of LAGBs present in BaSn0.92Sb0.08O3 ceramic sample.
PB  - University of Belgrade, Institute for Multidisciplinary Research
T2  - 7th Conference of the Serbian Society for Ceramic Materials, 7CSCS-2023, June 14-16, 2023, Belgrade, Serbia
T1  - Correlation between the microstructure and electrical properties of Sb-doped BaSnO3 ceramics
SP  - 36
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2085
ER  - 
@misc{
author = "Mitrović, Jelena and Počuča-Nešić, Milica and Malešević, Aleksandar and Branković, Zorica and Vojisavljević, Katarina and Savić, Slavica and Ribić, Vesna and Drev, Sandra and Podlogar, Matejka and Bernik, Slavko and Rapljenović, Željko and Ivek, Tomislav and Branković, Goran",
year = "2023",
abstract = "The non-magnetic, non-inductive electroconductive materials with linear current-voltage characteristic and low and almost constant electrical resistivity in the wide temperature range could be used in conditions unfavorable for metals and alloys. Particular emphasis is placed on the performance and endurance of these materials in conditions at constant high voltage, current, and energy, as well as operating in acidic and humid environmental conditions.
The aim of this work was to investigate the influence of antimony concentration and sintering parameters on the structure, microstructure, and electrical properties of antimony-doped barium stannate, BaSn1-xSbxO3 (BSSO, x = 0,00; 0,04; 0,06; 0,08 and 0,10) to obtain conductive electroceramic samples with linear current-voltage (I- U) characteristics and low electrical resistivity. For this purpose three different sintering techniques were used: conventional, spark plasma and cold sintering.
According to the X-ray diffraction (XRD) analysis, single-phase ceramic mater- ials with cubic BaSnO3 structure were obtained by conventional sintering at 1600 °C for 3 h and spark plasma sintering at 1100 °C for 5 min. Raising the spark plasma sintering temperature to 1200 °C induced the formation of Ba-rich secondary phase, Ba2SnO4. XRD analysis confirmed the presence of unreacted SnO2 and BaCO3 in cold sintered BaSn0.92Sb0.08O3 sample (310 °C for 5 min, 20 wt.% 1 M acetic acid). Scanning electron microscopy (SEM) indicates a significant decrease in grain size upon doping, regardless of the sintering technique. High-resolution transmission electron microscopy (HRTEM) revealed the presence of low angle grain boundaries (LAGBs) in conventionally and spark plasma sintered (1200 °C for 5 min) samples with x = 0.08. The results of electrical measurements confirmed the semiconducting properties of all BSSO, except the spark plasma sintered BaSn0.92Sb0.08O3 (1200 °C for 5 min) sample. This sample showed linear current-voltage characteristic, the lowest and almost constant electrical resistivity in the temperature range of 25–150
°C resulting from the loss of potential barriers at grain boundaries due to the large fraction of LAGBs present in BaSn0.92Sb0.08O3 ceramic sample.",
publisher = "University of Belgrade, Institute for Multidisciplinary Research",
journal = "7th Conference of the Serbian Society for Ceramic Materials, 7CSCS-2023, June 14-16, 2023, Belgrade, Serbia",
title = "Correlation between the microstructure and electrical properties of Sb-doped BaSnO3 ceramics",
pages = "36",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2085"
}
Mitrović, J., Počuča-Nešić, M., Malešević, A., Branković, Z., Vojisavljević, K., Savić, S., Ribić, V., Drev, S., Podlogar, M., Bernik, S., Rapljenović, Ž., Ivek, T.,& Branković, G.. (2023). Correlation between the microstructure and electrical properties of Sb-doped BaSnO3 ceramics. in 7th Conference of the Serbian Society for Ceramic Materials, 7CSCS-2023, June 14-16, 2023, Belgrade, Serbia
University of Belgrade, Institute for Multidisciplinary Research., 36.
https://hdl.handle.net/21.15107/rcub_rimsi_2085
Mitrović J, Počuča-Nešić M, Malešević A, Branković Z, Vojisavljević K, Savić S, Ribić V, Drev S, Podlogar M, Bernik S, Rapljenović Ž, Ivek T, Branković G. Correlation between the microstructure and electrical properties of Sb-doped BaSnO3 ceramics. in 7th Conference of the Serbian Society for Ceramic Materials, 7CSCS-2023, June 14-16, 2023, Belgrade, Serbia. 2023;:36.
https://hdl.handle.net/21.15107/rcub_rimsi_2085 .
Mitrović, Jelena, Počuča-Nešić, Milica, Malešević, Aleksandar, Branković, Zorica, Vojisavljević, Katarina, Savić, Slavica, Ribić, Vesna, Drev, Sandra, Podlogar, Matejka, Bernik, Slavko, Rapljenović, Željko, Ivek, Tomislav, Branković, Goran, "Correlation between the microstructure and electrical properties of Sb-doped BaSnO3 ceramics" in 7th Conference of the Serbian Society for Ceramic Materials, 7CSCS-2023, June 14-16, 2023, Belgrade, Serbia (2023):36,
https://hdl.handle.net/21.15107/rcub_rimsi_2085 .

The crucial role of defect structure in understanding the electrical properties of spark plasma sintered antimony doped barium stannate

Mitrović, Jelena; Rapljenović, Željko; Počuča-Nešić, Milica; Ivek, Tomislav; Branković, Zorica; Branković, Goran

(IOP Publishing Ltd, 2023)

TY  - JOUR
AU  - Mitrović, Jelena
AU  - Rapljenović, Željko
AU  - Počuča-Nešić, Milica
AU  - Ivek, Tomislav
AU  - Branković, Zorica
AU  - Branković, Goran
PY  - 2023
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2013
AB  - The influence of structural defects in spark plasma sintered BaSn1-xSbxO3 (BSSO, x=0.00 and 0.08)
ceramic samples on their electrical properties was investigated in the temperature range of 300–4K.
X-ray photoelectron spectroscopy (XPS) revealed the presence of point defects, primarily oxygen
vacancies (VO) and mixed oxidation states of tin (Sn2+/Sn4+) in both samples. As a result, the
undoped BSSO sample exibited a non-standard semiconductor behavior, retaining its temperaturedependent
resistivity. The electrical resistivity of the doped samples was two orders of magnitude
lower than that of the undoped sample. The presence of structural defects such asVO, mixed oxidation
states of the constituent elements, and significant amounts ofO− species make the electrical resistivity
of the doped sample constant in the temperature range of 300–70 K, indicating heavily-doped
semiconductor behavior.
PB  - IOP Publishing Ltd
T2  - Materials Research Express
T1  - The crucial role of defect structure in understanding the electrical properties of spark plasma sintered antimony doped barium stannate
SP  - 015901
VL  - 10
DO  - https://doi.org/10.1088/2053-1591/acb3b0
ER  - 
@article{
author = "Mitrović, Jelena and Rapljenović, Željko and Počuča-Nešić, Milica and Ivek, Tomislav and Branković, Zorica and Branković, Goran",
year = "2023",
abstract = "The influence of structural defects in spark plasma sintered BaSn1-xSbxO3 (BSSO, x=0.00 and 0.08)
ceramic samples on their electrical properties was investigated in the temperature range of 300–4K.
X-ray photoelectron spectroscopy (XPS) revealed the presence of point defects, primarily oxygen
vacancies (VO) and mixed oxidation states of tin (Sn2+/Sn4+) in both samples. As a result, the
undoped BSSO sample exibited a non-standard semiconductor behavior, retaining its temperaturedependent
resistivity. The electrical resistivity of the doped samples was two orders of magnitude
lower than that of the undoped sample. The presence of structural defects such asVO, mixed oxidation
states of the constituent elements, and significant amounts ofO− species make the electrical resistivity
of the doped sample constant in the temperature range of 300–70 K, indicating heavily-doped
semiconductor behavior.",
publisher = "IOP Publishing Ltd",
journal = "Materials Research Express",
title = "The crucial role of defect structure in understanding the electrical properties of spark plasma sintered antimony doped barium stannate",
pages = "015901",
volume = "10",
doi = "https://doi.org/10.1088/2053-1591/acb3b0"
}
Mitrović, J., Rapljenović, Ž., Počuča-Nešić, M., Ivek, T., Branković, Z.,& Branković, G.. (2023). The crucial role of defect structure in understanding the electrical properties of spark plasma sintered antimony doped barium stannate. in Materials Research Express
IOP Publishing Ltd., 10, 015901.
https://doi.org/https://doi.org/10.1088/2053-1591/acb3b0
Mitrović J, Rapljenović Ž, Počuča-Nešić M, Ivek T, Branković Z, Branković G. The crucial role of defect structure in understanding the electrical properties of spark plasma sintered antimony doped barium stannate. in Materials Research Express. 2023;10:015901.
doi:https://doi.org/10.1088/2053-1591/acb3b0 .
Mitrović, Jelena, Rapljenović, Željko, Počuča-Nešić, Milica, Ivek, Tomislav, Branković, Zorica, Branković, Goran, "The crucial role of defect structure in understanding the electrical properties of spark plasma sintered antimony doped barium stannate" in Materials Research Express, 10 (2023):015901,
https://doi.org/https://doi.org/10.1088/2053-1591/acb3b0 . .

Thermoelectric Cu doped sodium cobaltite – structural, magnetic and mechanical properties

Perać, Sanja; Savic, Slavica; Branković, Zorica; Bernik, Slavko; Radojković, Aleksandar; Branković, Goran

(Institut za multidisciplinarna istraživanja Kneza Višeslava 1, 11000 Belgrade, Serbia, 2023)

TY  - CONF
AU  - Perać, Sanja
AU  - Savic, Slavica
AU  - Branković, Zorica
AU  - Bernik, Slavko
AU  - Radojković, Aleksandar
AU  - Branković, Goran
PY  - 2023
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2213
AB  - With the increase of the consumption of electrical energy, the need for new energy sources is growing. Conversion of waste heat into electricity, based on the thermoelectric effects is one of the ways to produce the electrical energy. Layered cobalt oxides have been the subject of many investigations in past decade as candidates for application in energy conversion. The ceramic sodium cobaltite became a promising candidate for potential thermoelectric applications, because of its large thermopower and low resistivity. In this work, polycrystalline samples of NaCo2–xCuxO4 (x = 0, 0.01, 0.03, 0.05) were synthesized from the powder precursors obtained by the citric acid complex method (CAC) and mechanochemically assisted solid state reaction method (MASSR). The obtained powders were uniaxially pressed into disc-shaped pellets and subsequently sintered at 880 °C in inert argon atmosphere. Thermoelectric parameters (the electrical resistivity (ρ), the thermal conductivity (κ) and the Seebeck coefficient (S)) were measured in two temperature regions. In the first one (between 2 and 300 K) κ and S were measured by a Quantum Design physical property measurement system (PPMS 9T) equipped with a 9 T magnet and ρ by a standard four-terminal technique using the direct current. In the second, all parameters were measured simultaneously, in the temperature gradient (ΔT) between hot and cold sides of the samples using Z- meter, based on the “large ΔT method”, and the figure of merit (ZT) was subsequen tly calculated. Accordingly, ρ, κ and S were determined for a temperature gradient that is established between the hot and cold sides of the samples at the time of each measurement; thus the obtained values represented the actual thermoelectric response of a material under conditions of application. In the low temperature range the highest figure of merit of 0.022 at 300 K was observed for the CAC sample doped with 1 mol% Cu, and it was almost twice higher than in the undoped sample confirming the significant influence of Cu-doping with even small concentrations. As for the results obtained in the temperature gradient, the highest ZT value of 0.061 at T = 473 K was observed for the sample with 5 mol% of Cu prepared by the CAC method. Sample magnetization was measured using a Quantum Design SQUID MPMS-XL-5 magnetometer in zero field cooled (ZFC) and field cooled (FC) regimes, between 2 K and 300 K and in the applied field of 100 Oe. The magnetic susceptibility (χ) of all samples followed the Curie-Weiss law in the temperature range between 50 K and 300 K, while a negative Weiss constant (θ) implied an antiferromagnetic interaction. Indentation experiments were carried out to investigate mechanical properties, therefore, the hardness (H) and the Young's modulus of elasticity (Y) were determined using Agilent Nanoindenter G200. It was found that the highest Y (65.2 GPa) and H (1.41 GPa) were obtained for the CAC sample containing 1 mol% of Cu. These results indicated a significant improvement of mechanical properties even in the case of the sample with the lowest dopant concentration. In general, better thermoelectric and mechanic properties showed the samples synthesized by the CAC method, confirming that fine, homogeneous precursor powders present a good base for obtaining material with improved thermoelectric performances.
PB  - Institut za multidisciplinarna istraživanja Kneza Višeslava 1, 11000 Belgrade, Serbia
C3  - 7th Conference of the Serbian Society for Ceramic Materials
T1  - Thermoelectric Cu doped sodium cobaltite – structural, magnetic and mechanical properties
SP  - 59
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2213
ER  - 
@conference{
author = "Perać, Sanja and Savic, Slavica and Branković, Zorica and Bernik, Slavko and Radojković, Aleksandar and Branković, Goran",
year = "2023",
abstract = "With the increase of the consumption of electrical energy, the need for new energy sources is growing. Conversion of waste heat into electricity, based on the thermoelectric effects is one of the ways to produce the electrical energy. Layered cobalt oxides have been the subject of many investigations in past decade as candidates for application in energy conversion. The ceramic sodium cobaltite became a promising candidate for potential thermoelectric applications, because of its large thermopower and low resistivity. In this work, polycrystalline samples of NaCo2–xCuxO4 (x = 0, 0.01, 0.03, 0.05) were synthesized from the powder precursors obtained by the citric acid complex method (CAC) and mechanochemically assisted solid state reaction method (MASSR). The obtained powders were uniaxially pressed into disc-shaped pellets and subsequently sintered at 880 °C in inert argon atmosphere. Thermoelectric parameters (the electrical resistivity (ρ), the thermal conductivity (κ) and the Seebeck coefficient (S)) were measured in two temperature regions. In the first one (between 2 and 300 K) κ and S were measured by a Quantum Design physical property measurement system (PPMS 9T) equipped with a 9 T magnet and ρ by a standard four-terminal technique using the direct current. In the second, all parameters were measured simultaneously, in the temperature gradient (ΔT) between hot and cold sides of the samples using Z- meter, based on the “large ΔT method”, and the figure of merit (ZT) was subsequen tly calculated. Accordingly, ρ, κ and S were determined for a temperature gradient that is established between the hot and cold sides of the samples at the time of each measurement; thus the obtained values represented the actual thermoelectric response of a material under conditions of application. In the low temperature range the highest figure of merit of 0.022 at 300 K was observed for the CAC sample doped with 1 mol% Cu, and it was almost twice higher than in the undoped sample confirming the significant influence of Cu-doping with even small concentrations. As for the results obtained in the temperature gradient, the highest ZT value of 0.061 at T = 473 K was observed for the sample with 5 mol% of Cu prepared by the CAC method. Sample magnetization was measured using a Quantum Design SQUID MPMS-XL-5 magnetometer in zero field cooled (ZFC) and field cooled (FC) regimes, between 2 K and 300 K and in the applied field of 100 Oe. The magnetic susceptibility (χ) of all samples followed the Curie-Weiss law in the temperature range between 50 K and 300 K, while a negative Weiss constant (θ) implied an antiferromagnetic interaction. Indentation experiments were carried out to investigate mechanical properties, therefore, the hardness (H) and the Young's modulus of elasticity (Y) were determined using Agilent Nanoindenter G200. It was found that the highest Y (65.2 GPa) and H (1.41 GPa) were obtained for the CAC sample containing 1 mol% of Cu. These results indicated a significant improvement of mechanical properties even in the case of the sample with the lowest dopant concentration. In general, better thermoelectric and mechanic properties showed the samples synthesized by the CAC method, confirming that fine, homogeneous precursor powders present a good base for obtaining material with improved thermoelectric performances.",
publisher = "Institut za multidisciplinarna istraživanja Kneza Višeslava 1, 11000 Belgrade, Serbia",
journal = "7th Conference of the Serbian Society for Ceramic Materials",
title = "Thermoelectric Cu doped sodium cobaltite – structural, magnetic and mechanical properties",
pages = "59",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2213"
}
Perać, S., Savic, S., Branković, Z., Bernik, S., Radojković, A.,& Branković, G.. (2023). Thermoelectric Cu doped sodium cobaltite – structural, magnetic and mechanical properties. in 7th Conference of the Serbian Society for Ceramic Materials
Institut za multidisciplinarna istraživanja Kneza Višeslava 1, 11000 Belgrade, Serbia., 59.
https://hdl.handle.net/21.15107/rcub_rimsi_2213
Perać S, Savic S, Branković Z, Bernik S, Radojković A, Branković G. Thermoelectric Cu doped sodium cobaltite – structural, magnetic and mechanical properties. in 7th Conference of the Serbian Society for Ceramic Materials. 2023;:59.
https://hdl.handle.net/21.15107/rcub_rimsi_2213 .
Perać, Sanja, Savic, Slavica, Branković, Zorica, Bernik, Slavko, Radojković, Aleksandar, Branković, Goran, "Thermoelectric Cu doped sodium cobaltite – structural, magnetic and mechanical properties" in 7th Conference of the Serbian Society for Ceramic Materials (2023):59,
https://hdl.handle.net/21.15107/rcub_rimsi_2213 .

High temperature humidity sensing ability of indium-doped barium cerate

Malešević, Aleksandar; Radojković, Aleksandar; Žunić, Milan; Savic, Slavica; Perać, Sanja; Branković, Zorica; Branković, Goran

(Institut za multidisciplinarna istraživanja Kneza Višeslava 1, 11000 Belgrade, Serbia, 2023)

TY  - CONF
AU  - Malešević, Aleksandar
AU  - Radojković, Aleksandar
AU  - Žunić, Milan
AU  - Savic, Slavica
AU  - Perać, Sanja
AU  - Branković, Zorica
AU  - Branković, Goran
PY  - 2023
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2215
AB  - Acceptor-doped perovskites (ABO3 general formula) with large lattice constants (such as BaCeO3, SrCeO3, and BaZrO3) have been known as fast proton conductors. The ability to conduct protons at high temperatures makes them suitable for humidity sensors in a high-temperature environment. The presence of traces of humidity can play a key role in the functioning of certain industrial processes at higher temperatures. Electrical characteristics of BaCe0.75In0.25O3–δ (BCI25) sintered sample were analyzed in a dry and a wet argon atmosphere in the 250–700 °C temperature range. The water vapor sensing properties of BCI25 porous film and its response and recovery times were investigated under different conditions of temperature and water vapor concentration. A 30 μm thick film obtained from the powder calcined at 1050 °C exhibited sensitivity comparable to that of the sintered sample with significantly shorter response and recovery times. While the sensitivity of the film gradually decreased with a decrease in partial pressure of water vapor (p(H2O)), a noticeable sensitivity was still observed at p(H2O) of 200 Pa. Decrease in conductivity depended logarithmically on the partial pressure of water with the slope of 0.52 that is close to the theoretical value. After several cycles, the reusability test proved an almost unchanged ratio between the impedance value in the dry and the wet Ar atmosphere (p(H2O) = 2.34 kPa), which implied that BCI25, having good stability and sensitivity, is a promising high-temperature humidity sensor.
PB  - Institut za multidisciplinarna istraživanja Kneza Višeslava 1, 11000 Belgrade, Serbia
C3  - 7th Conference of the Serbian Society for Ceramic Materials
T1  - High temperature humidity sensing ability of indium-doped barium cerate
SP  - 76
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2215
ER  - 
@conference{
author = "Malešević, Aleksandar and Radojković, Aleksandar and Žunić, Milan and Savic, Slavica and Perać, Sanja and Branković, Zorica and Branković, Goran",
year = "2023",
abstract = "Acceptor-doped perovskites (ABO3 general formula) with large lattice constants (such as BaCeO3, SrCeO3, and BaZrO3) have been known as fast proton conductors. The ability to conduct protons at high temperatures makes them suitable for humidity sensors in a high-temperature environment. The presence of traces of humidity can play a key role in the functioning of certain industrial processes at higher temperatures. Electrical characteristics of BaCe0.75In0.25O3–δ (BCI25) sintered sample were analyzed in a dry and a wet argon atmosphere in the 250–700 °C temperature range. The water vapor sensing properties of BCI25 porous film and its response and recovery times were investigated under different conditions of temperature and water vapor concentration. A 30 μm thick film obtained from the powder calcined at 1050 °C exhibited sensitivity comparable to that of the sintered sample with significantly shorter response and recovery times. While the sensitivity of the film gradually decreased with a decrease in partial pressure of water vapor (p(H2O)), a noticeable sensitivity was still observed at p(H2O) of 200 Pa. Decrease in conductivity depended logarithmically on the partial pressure of water with the slope of 0.52 that is close to the theoretical value. After several cycles, the reusability test proved an almost unchanged ratio between the impedance value in the dry and the wet Ar atmosphere (p(H2O) = 2.34 kPa), which implied that BCI25, having good stability and sensitivity, is a promising high-temperature humidity sensor.",
publisher = "Institut za multidisciplinarna istraživanja Kneza Višeslava 1, 11000 Belgrade, Serbia",
journal = "7th Conference of the Serbian Society for Ceramic Materials",
title = "High temperature humidity sensing ability of indium-doped barium cerate",
pages = "76",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2215"
}
Malešević, A., Radojković, A., Žunić, M., Savic, S., Perać, S., Branković, Z.,& Branković, G.. (2023). High temperature humidity sensing ability of indium-doped barium cerate. in 7th Conference of the Serbian Society for Ceramic Materials
Institut za multidisciplinarna istraživanja Kneza Višeslava 1, 11000 Belgrade, Serbia., 76.
https://hdl.handle.net/21.15107/rcub_rimsi_2215
Malešević A, Radojković A, Žunić M, Savic S, Perać S, Branković Z, Branković G. High temperature humidity sensing ability of indium-doped barium cerate. in 7th Conference of the Serbian Society for Ceramic Materials. 2023;:76.
https://hdl.handle.net/21.15107/rcub_rimsi_2215 .
Malešević, Aleksandar, Radojković, Aleksandar, Žunić, Milan, Savic, Slavica, Perać, Sanja, Branković, Zorica, Branković, Goran, "High temperature humidity sensing ability of indium-doped barium cerate" in 7th Conference of the Serbian Society for Ceramic Materials (2023):76,
https://hdl.handle.net/21.15107/rcub_rimsi_2215 .

Antifeedant activity of the plant products derived from the neem and linalool on the spongy moth larvae

Simović, Nemanja; Dobrosavljević, Jovan N.; Milenković, Ivan; Branković, Goran; Branković, Zorica; Ćirković, Jovana; Radojković, Aleksandar; Perać, Sanja; Jovanović, Jelena; Jovanović, Dušan; Milanovic, Slobodan

(2023)

TY  - CONF
AU  - Simović, Nemanja
AU  - Dobrosavljević, Jovan N.
AU  - Milenković, Ivan
AU  - Branković, Goran
AU  - Branković, Zorica
AU  - Ćirković, Jovana
AU  - Radojković, Aleksandar
AU  - Perać, Sanja
AU  - Jovanović, Jelena
AU  - Jovanović, Dušan
AU  - Milanovic, Slobodan
PY  - 2023
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2208
AB  - With the significant loss of biodiversity in the 20th and 21st century, pollution of air, soil, and water, alternatives to chemical pesticides are needed to preserve nature. One of the alternatives is the usage of plant components as pest insect control. They are an appropriate alternative to chemical pesticides as they are cost-effective, easy, and safe to use, do not affect the environment or beneficial insects negatively, and are still an effective measure against pest insects. The biggest challenge with plant components is that they are biologically unstable. That is why further insight into the effectiveness of different extracts and oils against different pest insects is needed. We tested the antifeedant activity of plant products derived from neem (Azadirachta indica A.Juss.), and linalool on the Spongy moth (Lymantria dispar L, 1758) larvae. To test the efficiency of these compounds, we conducted choice tests in laboratory conditions. Two disks (treatment and control) cut from red oak (Quercus rubra L.) leaves were presented to the second instar spongy moth larvae in Petri dishes for the testing. Twenty-five Petri dishes were used for each of the tested compounds at four concentrations (200 in total). The tested compounds showed the most significant effect at higher concentrations.
C3  - XIV International Scientific Agriculture Symposium "AGROSYM 2023"
T1  - Antifeedant activity of the plant products derived from the neem and linalool on the spongy moth larvae
SP  - 345
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2208
ER  - 
@conference{
author = "Simović, Nemanja and Dobrosavljević, Jovan N. and Milenković, Ivan and Branković, Goran and Branković, Zorica and Ćirković, Jovana and Radojković, Aleksandar and Perać, Sanja and Jovanović, Jelena and Jovanović, Dušan and Milanovic, Slobodan",
year = "2023",
abstract = "With the significant loss of biodiversity in the 20th and 21st century, pollution of air, soil, and water, alternatives to chemical pesticides are needed to preserve nature. One of the alternatives is the usage of plant components as pest insect control. They are an appropriate alternative to chemical pesticides as they are cost-effective, easy, and safe to use, do not affect the environment or beneficial insects negatively, and are still an effective measure against pest insects. The biggest challenge with plant components is that they are biologically unstable. That is why further insight into the effectiveness of different extracts and oils against different pest insects is needed. We tested the antifeedant activity of plant products derived from neem (Azadirachta indica A.Juss.), and linalool on the Spongy moth (Lymantria dispar L, 1758) larvae. To test the efficiency of these compounds, we conducted choice tests in laboratory conditions. Two disks (treatment and control) cut from red oak (Quercus rubra L.) leaves were presented to the second instar spongy moth larvae in Petri dishes for the testing. Twenty-five Petri dishes were used for each of the tested compounds at four concentrations (200 in total). The tested compounds showed the most significant effect at higher concentrations.",
journal = "XIV International Scientific Agriculture Symposium "AGROSYM 2023"",
title = "Antifeedant activity of the plant products derived from the neem and linalool on the spongy moth larvae",
pages = "345",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2208"
}
Simović, N., Dobrosavljević, J. N., Milenković, I., Branković, G., Branković, Z., Ćirković, J., Radojković, A., Perać, S., Jovanović, J., Jovanović, D.,& Milanovic, S.. (2023). Antifeedant activity of the plant products derived from the neem and linalool on the spongy moth larvae. in XIV International Scientific Agriculture Symposium "AGROSYM 2023", 345.
https://hdl.handle.net/21.15107/rcub_rimsi_2208
Simović N, Dobrosavljević JN, Milenković I, Branković G, Branković Z, Ćirković J, Radojković A, Perać S, Jovanović J, Jovanović D, Milanovic S. Antifeedant activity of the plant products derived from the neem and linalool on the spongy moth larvae. in XIV International Scientific Agriculture Symposium "AGROSYM 2023". 2023;:345.
https://hdl.handle.net/21.15107/rcub_rimsi_2208 .
Simović, Nemanja, Dobrosavljević, Jovan N., Milenković, Ivan, Branković, Goran, Branković, Zorica, Ćirković, Jovana, Radojković, Aleksandar, Perać, Sanja, Jovanović, Jelena, Jovanović, Dušan, Milanovic, Slobodan, "Antifeedant activity of the plant products derived from the neem and linalool on the spongy moth larvae" in XIV International Scientific Agriculture Symposium "AGROSYM 2023" (2023):345,
https://hdl.handle.net/21.15107/rcub_rimsi_2208 .

Synthesis of Bismuth Vanadate Photocatalyst with Enhanced Adsorption Properties

Jelić, Stefan; Ćirković, Jovana; Jovanović, Jelena; Radojković, Aleksandar; Novaković, Tatjana; Branković, Goran; Branković, Zorica

(Serbian Society for Ceramic Materials, 2023)

TY  - CONF
AU  - Jelić, Stefan
AU  - Ćirković, Jovana
AU  - Jovanović, Jelena
AU  - Radojković, Aleksandar
AU  - Novaković, Tatjana
AU  - Branković, Goran
AU  - Branković, Zorica
PY  - 2023
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2296
AB  - Efficiency of a semiconductor catalyst is directly correlated to its surface to
which a reactant species is adsorbed. There are several ways to optimize the active
surface, such as synthesis, processing or any aftertreatment of a photocatalytic
material. Our research was focused on modifying the existing sonochemically
assisted synthesis of bismuth vanadate.
Two optimization methods were used in order to increase specific surface of the
photocatalyst and number of its active sites. The first method was to change
concentration of reactants used in the synthesis to reduce agglomeration of bismuth
vanadate. Sonochemically assisted synthesis was performed with three different
concentrations of reactants to observe agglomeration tendency of the catalyst. The
other method included the use of sodium dodecyl sulfate (SDS) as a surfactant in
synthesis at highest concentration in order to hinder the particle growth.
Bismuth vanadate was shown to degrade mordant blue 9 dye (MB9) most
effectively in alkaline medium (pH = 13) under visible light, discoloring the solution
in under 2 hours, while the highest adsorption of MB9 is observed in acidic solution
(pH = 1).
PB  - Serbian Society for Ceramic Materials
T1  - Synthesis of Bismuth Vanadate Photocatalyst with Enhanced Adsorption Properties
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2296
ER  - 
@conference{
author = "Jelić, Stefan and Ćirković, Jovana and Jovanović, Jelena and Radojković, Aleksandar and Novaković, Tatjana and Branković, Goran and Branković, Zorica",
year = "2023",
abstract = "Efficiency of a semiconductor catalyst is directly correlated to its surface to
which a reactant species is adsorbed. There are several ways to optimize the active
surface, such as synthesis, processing or any aftertreatment of a photocatalytic
material. Our research was focused on modifying the existing sonochemically
assisted synthesis of bismuth vanadate.
Two optimization methods were used in order to increase specific surface of the
photocatalyst and number of its active sites. The first method was to change
concentration of reactants used in the synthesis to reduce agglomeration of bismuth
vanadate. Sonochemically assisted synthesis was performed with three different
concentrations of reactants to observe agglomeration tendency of the catalyst. The
other method included the use of sodium dodecyl sulfate (SDS) as a surfactant in
synthesis at highest concentration in order to hinder the particle growth.
Bismuth vanadate was shown to degrade mordant blue 9 dye (MB9) most
effectively in alkaline medium (pH = 13) under visible light, discoloring the solution
in under 2 hours, while the highest adsorption of MB9 is observed in acidic solution
(pH = 1).",
publisher = "Serbian Society for Ceramic Materials",
title = "Synthesis of Bismuth Vanadate Photocatalyst with Enhanced Adsorption Properties",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2296"
}
Jelić, S., Ćirković, J., Jovanović, J., Radojković, A., Novaković, T., Branković, G.,& Branković, Z.. (2023). Synthesis of Bismuth Vanadate Photocatalyst with Enhanced Adsorption Properties. 
Serbian Society for Ceramic Materials..
https://hdl.handle.net/21.15107/rcub_rimsi_2296
Jelić S, Ćirković J, Jovanović J, Radojković A, Novaković T, Branković G, Branković Z. Synthesis of Bismuth Vanadate Photocatalyst with Enhanced Adsorption Properties. 2023;.
https://hdl.handle.net/21.15107/rcub_rimsi_2296 .
Jelić, Stefan, Ćirković, Jovana, Jovanović, Jelena, Radojković, Aleksandar, Novaković, Tatjana, Branković, Goran, Branković, Zorica, "Synthesis of Bismuth Vanadate Photocatalyst with Enhanced Adsorption Properties" (2023),
https://hdl.handle.net/21.15107/rcub_rimsi_2296 .

Stability and functionality of BaCe1-xInxO3-δ as a high temperature proton conducting electrolyte for solid oxide fuel cells

Malešević, Aleksandar; Radojković, Aleksandar; Žunić, Milan; Dapčević, Aleksandra; Perać, Sanja; Branković, Zorica; Branković, Goran

(Institut za multidisciplinarna istraživanja Kneza Višeslava 1, 11000 Belgrade, Serbia, 2022)

TY  - CONF
AU  - Malešević, Aleksandar
AU  - Radojković, Aleksandar
AU  - Žunić, Milan
AU  - Dapčević, Aleksandra
AU  - Perać, Sanja
AU  - Branković, Zorica
AU  - Branković, Goran
PY  - 2022
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2212
AB  - Mixed oxides with the perovskite structure are known for their proton conducting ability at the temperatures above 500 °C. This characteristic makes them suitable for application as an electrolyte for intermediate-temperature solid oxide fuel cells. Doping of BaCeO3 with In3+ in place of Ce4+ leads to emergence of oxygen vacancies which take part in creation of proton defects. The characteristics of the BaCe1-xInxO3-δ were investigated in a wide range of In dopant concentrations (x = 0.05; 0.10; 0.15; 0.20; 0.25; 0.30; 0.35 and 0.40). All the samples were synthesized by a citric-nitric autocombustion method. The dense electrolytes were formed after sintering at 1300 °C for 5 h in air. X-ray powder diffraction analysis showed that powders with In content greater than 25 mol% contained In2O3 as a secondary phase. The highest total conductivity around 5×10–3 S•cm–1 was measured for the sample BaCe0.75In0.25O3-δ in the wet hydrogen atmosphere at 700 °C. After exposure to pure CO2 atmosphere at 700 °C for 5 h, the samples were investigated by X-ray diffraction analysis. It was found that even 15 mol% In could completely suppress degradation of the electrolyte. Ni-
BaCe0.75In0.25O3-δ/BaCe0.75In0.25O3-δ/LSCF-BaCe0.75In0.25O3-δ fuel cell was tested in wet hydrogen atmosphere and power density output of 264 mW•cm–2 was measured at 700 °C. This result is an indication of stability and functionality of this electrolyte and its versatility in respect to type of fuel and performing environment.
PB  - Institut za multidisciplinarna istraživanja Kneza Višeslava 1, 11000 Belgrade, Serbia
C3  - 6th Conference of the Serbian Society for Ceramic Materials
T1  - Stability and functionality of BaCe1-xInxO3-δ as a high temperature proton conducting electrolyte for solid oxide fuel cells
SP  - 57
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2212
ER  - 
@conference{
author = "Malešević, Aleksandar and Radojković, Aleksandar and Žunić, Milan and Dapčević, Aleksandra and Perać, Sanja and Branković, Zorica and Branković, Goran",
year = "2022",
abstract = "Mixed oxides with the perovskite structure are known for their proton conducting ability at the temperatures above 500 °C. This characteristic makes them suitable for application as an electrolyte for intermediate-temperature solid oxide fuel cells. Doping of BaCeO3 with In3+ in place of Ce4+ leads to emergence of oxygen vacancies which take part in creation of proton defects. The characteristics of the BaCe1-xInxO3-δ were investigated in a wide range of In dopant concentrations (x = 0.05; 0.10; 0.15; 0.20; 0.25; 0.30; 0.35 and 0.40). All the samples were synthesized by a citric-nitric autocombustion method. The dense electrolytes were formed after sintering at 1300 °C for 5 h in air. X-ray powder diffraction analysis showed that powders with In content greater than 25 mol% contained In2O3 as a secondary phase. The highest total conductivity around 5×10–3 S•cm–1 was measured for the sample BaCe0.75In0.25O3-δ in the wet hydrogen atmosphere at 700 °C. After exposure to pure CO2 atmosphere at 700 °C for 5 h, the samples were investigated by X-ray diffraction analysis. It was found that even 15 mol% In could completely suppress degradation of the electrolyte. Ni-
BaCe0.75In0.25O3-δ/BaCe0.75In0.25O3-δ/LSCF-BaCe0.75In0.25O3-δ fuel cell was tested in wet hydrogen atmosphere and power density output of 264 mW•cm–2 was measured at 700 °C. This result is an indication of stability and functionality of this electrolyte and its versatility in respect to type of fuel and performing environment.",
publisher = "Institut za multidisciplinarna istraživanja Kneza Višeslava 1, 11000 Belgrade, Serbia",
journal = "6th Conference of the Serbian Society for Ceramic Materials",
title = "Stability and functionality of BaCe1-xInxO3-δ as a high temperature proton conducting electrolyte for solid oxide fuel cells",
pages = "57",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2212"
}
Malešević, A., Radojković, A., Žunić, M., Dapčević, A., Perać, S., Branković, Z.,& Branković, G.. (2022). Stability and functionality of BaCe1-xInxO3-δ as a high temperature proton conducting electrolyte for solid oxide fuel cells. in 6th Conference of the Serbian Society for Ceramic Materials
Institut za multidisciplinarna istraživanja Kneza Višeslava 1, 11000 Belgrade, Serbia., 57.
https://hdl.handle.net/21.15107/rcub_rimsi_2212
Malešević A, Radojković A, Žunić M, Dapčević A, Perać S, Branković Z, Branković G. Stability and functionality of BaCe1-xInxO3-δ as a high temperature proton conducting electrolyte for solid oxide fuel cells. in 6th Conference of the Serbian Society for Ceramic Materials. 2022;:57.
https://hdl.handle.net/21.15107/rcub_rimsi_2212 .
Malešević, Aleksandar, Radojković, Aleksandar, Žunić, Milan, Dapčević, Aleksandra, Perać, Sanja, Branković, Zorica, Branković, Goran, "Stability and functionality of BaCe1-xInxO3-δ as a high temperature proton conducting electrolyte for solid oxide fuel cells" in 6th Conference of the Serbian Society for Ceramic Materials (2022):57,
https://hdl.handle.net/21.15107/rcub_rimsi_2212 .

The improvement of ferroelectric properties of BiFeO3 ceramics by doping with La3+ and Eu3+

Luković Golić, Danijela; Radojković, Aleksandar; Jović Orsini, Nataša; Dapčević, Aleksandra; Branković, Goran; Branković, Zorica

(Institut za multidisciplinarna istraživanja, Kneza Višeslava 1, 11000 Belgrade, Serbia, 2022)

TY  - CONF
AU  - Luković Golić, Danijela
AU  - Radojković, Aleksandar
AU  - Jović Orsini, Nataša
AU  - Dapčević, Aleksandra
AU  - Branković, Goran
AU  - Branković, Zorica
PY  - 2022
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2320
AB  - Bismuth ferrite is a unique multiferroic material that has a ferroelectric and antiferromagnetic order at room temperature. The rhombohedrally (R3c) distorted  BiFeO3 perovskite structure is a result of relative cation displacement along [111] axis of the cubic perovskite structure and relative rotation of two oxygen octahedra in opposite directions around [111] axis [1]. The partial substitution of Bi3+ with rare-earth ions can affect the magnitude of lattice distortion and thus the value of electric polarization. The presence of undesirable secondary phases (Bi2Fe4O9 and Bi25FeO39) and structural point defects (oxygen and bismuth vacancies) in pure BiFeO3 lead to a high leakage current, which deteriorates its ferroelectric properties. Doping with rare-earth elements with large ionic radii is found to reduce the number of the structural defects and thus improve ferroelectric properties [2].
	The influence of partial substitution of Bi3+ with La3+ and/or Eu3+ on ferroelectric properties of BiFeO3 ceramics was investigated. The Bi1-(x+y)LaxEuyFeO3 (x = 0, 0.025 0.05, 0.10; y = 0, 0.025, 0.05, 0.10) powders were synthesized by hydro-evaporation method, uniaxially pressed at 9 t/cm2 and sintered at 835 °C for 3 h. All the ceramic samples showed a rhombohedral structure, without presence of the secondary phases. Their morphology indicated the complete sintering under the given conditions. The grain size and grain shapes differed more depending on the dopant type and amount. The introduction of La3+ and/or Eu3+ at the site of Bi3+ led to such distortions within the rhombohedral lattice that resulted in much greater remnant electric polarization (Pr) in comparison with the undoped sample. The Bi1-(x+y)LaxEuyFeO3 ceramic samples with x+y = 0.10 showed approximately quadratic polarization vs. electric field P(E) hysteresis curves as well as significantly high values of pure ferroelectric polarization Pr, in large electric fields (100 – 140) kV/cm. The leakage currents of La3+/Eu3+-doped samples are mostly reduced, especially those doped only with Eu3+.
PB  - Institut za multidisciplinarna istraživanja, Kneza Višeslava 1, 11000 Belgrade, Serbia
C3  - 6th Conference of The Serbian Society for Ceramic Materials June 28-29, 2022, Belgrade, Serbia 6CSCS-2022
T1  - The improvement of ferroelectric properties of BiFeO3 ceramics by doping with La3+ and Eu3+
SP  - 77
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2320
ER  - 
@conference{
author = "Luković Golić, Danijela and Radojković, Aleksandar and Jović Orsini, Nataša and Dapčević, Aleksandra and Branković, Goran and Branković, Zorica",
year = "2022",
abstract = "Bismuth ferrite is a unique multiferroic material that has a ferroelectric and antiferromagnetic order at room temperature. The rhombohedrally (R3c) distorted  BiFeO3 perovskite structure is a result of relative cation displacement along [111] axis of the cubic perovskite structure and relative rotation of two oxygen octahedra in opposite directions around [111] axis [1]. The partial substitution of Bi3+ with rare-earth ions can affect the magnitude of lattice distortion and thus the value of electric polarization. The presence of undesirable secondary phases (Bi2Fe4O9 and Bi25FeO39) and structural point defects (oxygen and bismuth vacancies) in pure BiFeO3 lead to a high leakage current, which deteriorates its ferroelectric properties. Doping with rare-earth elements with large ionic radii is found to reduce the number of the structural defects and thus improve ferroelectric properties [2].
	The influence of partial substitution of Bi3+ with La3+ and/or Eu3+ on ferroelectric properties of BiFeO3 ceramics was investigated. The Bi1-(x+y)LaxEuyFeO3 (x = 0, 0.025 0.05, 0.10; y = 0, 0.025, 0.05, 0.10) powders were synthesized by hydro-evaporation method, uniaxially pressed at 9 t/cm2 and sintered at 835 °C for 3 h. All the ceramic samples showed a rhombohedral structure, without presence of the secondary phases. Their morphology indicated the complete sintering under the given conditions. The grain size and grain shapes differed more depending on the dopant type and amount. The introduction of La3+ and/or Eu3+ at the site of Bi3+ led to such distortions within the rhombohedral lattice that resulted in much greater remnant electric polarization (Pr) in comparison with the undoped sample. The Bi1-(x+y)LaxEuyFeO3 ceramic samples with x+y = 0.10 showed approximately quadratic polarization vs. electric field P(E) hysteresis curves as well as significantly high values of pure ferroelectric polarization Pr, in large electric fields (100 – 140) kV/cm. The leakage currents of La3+/Eu3+-doped samples are mostly reduced, especially those doped only with Eu3+.",
publisher = "Institut za multidisciplinarna istraživanja, Kneza Višeslava 1, 11000 Belgrade, Serbia",
journal = "6th Conference of The Serbian Society for Ceramic Materials June 28-29, 2022, Belgrade, Serbia 6CSCS-2022",
title = "The improvement of ferroelectric properties of BiFeO3 ceramics by doping with La3+ and Eu3+",
pages = "77",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2320"
}
Luković Golić, D., Radojković, A., Jović Orsini, N., Dapčević, A., Branković, G.,& Branković, Z.. (2022). The improvement of ferroelectric properties of BiFeO3 ceramics by doping with La3+ and Eu3+. in 6th Conference of The Serbian Society for Ceramic Materials June 28-29, 2022, Belgrade, Serbia 6CSCS-2022
Institut za multidisciplinarna istraživanja, Kneza Višeslava 1, 11000 Belgrade, Serbia., 77.
https://hdl.handle.net/21.15107/rcub_rimsi_2320
Luković Golić D, Radojković A, Jović Orsini N, Dapčević A, Branković G, Branković Z. The improvement of ferroelectric properties of BiFeO3 ceramics by doping with La3+ and Eu3+. in 6th Conference of The Serbian Society for Ceramic Materials June 28-29, 2022, Belgrade, Serbia 6CSCS-2022. 2022;:77.
https://hdl.handle.net/21.15107/rcub_rimsi_2320 .
Luković Golić, Danijela, Radojković, Aleksandar, Jović Orsini, Nataša, Dapčević, Aleksandra, Branković, Goran, Branković, Zorica, "The improvement of ferroelectric properties of BiFeO3 ceramics by doping with La3+ and Eu3+" in 6th Conference of The Serbian Society for Ceramic Materials June 28-29, 2022, Belgrade, Serbia 6CSCS-2022 (2022):77,
https://hdl.handle.net/21.15107/rcub_rimsi_2320 .

The catalytic degradation of RO16 dye under dark ambient conditions using La-Ni-Nb-O-based powders

Počuča-Nešić, Milica; Vukašinović, Jelena; Dapčević, Aleksandra; Ribić, Vesna; Branković, Zorica; Vojisavljević, Katarina; Marinković Stanojević, Zorica; Branković, Goran

(University of Belgrade, Institute for Multidisciplinary Research, 2022)

TY  - CONF
AU  - Počuča-Nešić, Milica
AU  - Vukašinović, Jelena
AU  - Dapčević, Aleksandra
AU  - Ribić, Vesna
AU  - Branković, Zorica
AU  - Vojisavljević, Katarina
AU  - Marinković Stanojević, Zorica
AU  - Branković, Goran
PY  - 2022
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2031
AB  - Dyes released from textile industries present a big threat to the environment, and
remediation of wastewaters became one of the major scientific challenges. In recent
years, there has been a great need for catalysts that would oxidize pollutants under
dark ambient conditions without the use of external stimulants like light,
temperature, or additional chemicals such as O3, H2O2. Efficient work of these
catalysts would significantly reduce the energy consumption. Among other
materials, perovskite-type oxides with general formula ABO3 emerged as possible
catalysts for dye degradation in the dark conditions. Lanthanum nickelates with
single (LaNiO3) and layered perovskite structure (La4Ni3O10, La3Ni2O7, La2NiO4)
showed good catalytic properties, due to the existence of nickel in two oxidation
states (Ni2+ and Ni3+) and the oxygen non-stoichiometry in these materials [1].
This study presents structural, microstructural and catalytic properties of the
LaNi1-xNbxO3-based (xNb = 0.000, 0,005 and 0,010; La-Ni-Nb-O) powders prepared
by mechanical activation method. The XRD (X-Ray Diffraction) analysis revealed
the existence of a multiphase oxide system, including layered structures of
nickelates Lan+1NinO3n+1 (n = 3, 2, 1, 0) and NiO phase in all La-Ni-Nb-O-based
powders. Also, the HRTEM (High Resolution Transmission Electron Microscopy)
analysis confirmed the presence of structural polytypes in these powders. The
catalytic properties of La-Ni-Nb-O-based powders were investigated by degradation
of the anionic azo dye, Reactive Orange 16 (RO16), under dark ambient conditions
at different pH values (3, 6.5, 9.5 and 11) and temperature of 20 °C. The best
catalytic efficiency in the degradation of RO16 dye showed the sample with x(Nb) =
0.010 in acidic solution, where the residual of RO16 dye was about 4.5 % after 330
minutes. The reusability test for this powder in degradation process of RO16 dye
showed that the sample with x(Nb) = 0.010 retained its catalytic activity during three
cycles.
1. W. Zhong et al., Appl. Catal. A, Gen., 549 (2018) 302.
PB  - University of Belgrade, Institute for Multidisciplinary Research
C3  - 6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia
T1  - The catalytic degradation of RO16 dye under dark ambient conditions using La-Ni-Nb-O-based powders
SP  - 63
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2031
ER  - 
@conference{
author = "Počuča-Nešić, Milica and Vukašinović, Jelena and Dapčević, Aleksandra and Ribić, Vesna and Branković, Zorica and Vojisavljević, Katarina and Marinković Stanojević, Zorica and Branković, Goran",
year = "2022",
abstract = "Dyes released from textile industries present a big threat to the environment, and
remediation of wastewaters became one of the major scientific challenges. In recent
years, there has been a great need for catalysts that would oxidize pollutants under
dark ambient conditions without the use of external stimulants like light,
temperature, or additional chemicals such as O3, H2O2. Efficient work of these
catalysts would significantly reduce the energy consumption. Among other
materials, perovskite-type oxides with general formula ABO3 emerged as possible
catalysts for dye degradation in the dark conditions. Lanthanum nickelates with
single (LaNiO3) and layered perovskite structure (La4Ni3O10, La3Ni2O7, La2NiO4)
showed good catalytic properties, due to the existence of nickel in two oxidation
states (Ni2+ and Ni3+) and the oxygen non-stoichiometry in these materials [1].
This study presents structural, microstructural and catalytic properties of the
LaNi1-xNbxO3-based (xNb = 0.000, 0,005 and 0,010; La-Ni-Nb-O) powders prepared
by mechanical activation method. The XRD (X-Ray Diffraction) analysis revealed
the existence of a multiphase oxide system, including layered structures of
nickelates Lan+1NinO3n+1 (n = 3, 2, 1, 0) and NiO phase in all La-Ni-Nb-O-based
powders. Also, the HRTEM (High Resolution Transmission Electron Microscopy)
analysis confirmed the presence of structural polytypes in these powders. The
catalytic properties of La-Ni-Nb-O-based powders were investigated by degradation
of the anionic azo dye, Reactive Orange 16 (RO16), under dark ambient conditions
at different pH values (3, 6.5, 9.5 and 11) and temperature of 20 °C. The best
catalytic efficiency in the degradation of RO16 dye showed the sample with x(Nb) =
0.010 in acidic solution, where the residual of RO16 dye was about 4.5 % after 330
minutes. The reusability test for this powder in degradation process of RO16 dye
showed that the sample with x(Nb) = 0.010 retained its catalytic activity during three
cycles.
1. W. Zhong et al., Appl. Catal. A, Gen., 549 (2018) 302.",
publisher = "University of Belgrade, Institute for Multidisciplinary Research",
journal = "6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia",
title = "The catalytic degradation of RO16 dye under dark ambient conditions using La-Ni-Nb-O-based powders",
pages = "63",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2031"
}
Počuča-Nešić, M., Vukašinović, J., Dapčević, A., Ribić, V., Branković, Z., Vojisavljević, K., Marinković Stanojević, Z.,& Branković, G.. (2022). The catalytic degradation of RO16 dye under dark ambient conditions using La-Ni-Nb-O-based powders. in 6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia
University of Belgrade, Institute for Multidisciplinary Research., 63.
https://hdl.handle.net/21.15107/rcub_rimsi_2031
Počuča-Nešić M, Vukašinović J, Dapčević A, Ribić V, Branković Z, Vojisavljević K, Marinković Stanojević Z, Branković G. The catalytic degradation of RO16 dye under dark ambient conditions using La-Ni-Nb-O-based powders. in 6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia. 2022;:63.
https://hdl.handle.net/21.15107/rcub_rimsi_2031 .
Počuča-Nešić, Milica, Vukašinović, Jelena, Dapčević, Aleksandra, Ribić, Vesna, Branković, Zorica, Vojisavljević, Katarina, Marinković Stanojević, Zorica, Branković, Goran, "The catalytic degradation of RO16 dye under dark ambient conditions using La-Ni-Nb-O-based powders" in 6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia (2022):63,
https://hdl.handle.net/21.15107/rcub_rimsi_2031 .

Hierarchical ZnO/SnO2 heterostructures via hydrothermally assisted electrospinning technique: synthesis and photocatalytic performances

Vojisavljević, Katarina; Vukašinović, Jelena; Počuča-Nešić, Milica; Savic, Slavica; Podlogar, Matejka; Zemljak, Olivera; Branković, Zorica

(University of Belgrade, Institute for Multidisciplinary Research, 2022)

TY  - CONF
AU  - Vojisavljević, Katarina
AU  - Vukašinović, Jelena
AU  - Počuča-Nešić, Milica
AU  - Savic, Slavica
AU  - Podlogar, Matejka
AU  - Zemljak, Olivera
AU  - Branković, Zorica
PY  - 2022
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2038
AB  - Hierarchical nanostructures with multiporous tin oxide nanofibers (SnO2-
MPNFs) and zinc oxide nanorods (ZnO-NRs) have been synthesized by combining
electrospinning technique and hydrothermal method. A solution containing
uniformly distributed tin (Sn) and silicon (Si) species of precursors, as well as a
sacrificial polymer (PVP) was electrospun using a single-nozzle spinneret to
fabricate nanofibers. In virtue of the Kirkendall effect driven by calcination at
550 °C, the SiO2-cored SnO2 nanofibers (SnO2-SiO2-NFs) deliberated from PVP
were formed and used as backbones for further hydrothermal growth of ZnO-NRs.
By varying the hydrothermal reaction time (0.5–2 h) at the constant concentration of
SnO2-SiO2-NFs, zinc (Zn) precursor, directing agent (hexamethylenetetramine,
HMT) and aqueous ammonia, the density, length and thickness of ZnO-NRs were
controlled. Nanofibers and ZnO-NRs/SnO2-MPNFs heterostructures are confirmed
by X-ray diffraction (XRD), field-emission scanning electron microcopy (FE-SEM),
energy dispersive spectrometer (EDS), transmission electron microscopy (TEM) and
elemental mapping analysis. 
The hydrothermal treatment conducted at 90 °C in aqueous ammonia allowed:
a) selective etching of SiO2 from the SnO2-SiO2-NFs core and SiO2 trapped between
SnO2 particles, and b) effective growth of ZnO-NRs. The process resulted in
ZnO-NRs/SnO2-MPNFs heterostructures with ZnO-NRs of 1–5 μm in length
attached to SnO2-MPNFs, the shell of which was composed of ultra-fine SnO2
crystallites (~5 nm in size) and where the four porous channels create the core
instead of SiO2. Photocatalytic performance of the heterostructures was investigated
toward different organic azo-dyes (methylene blue, methyl orange) and obvious
enhancement was demonstrated in degradation of the organic pollutant, compared to
primary SnO2-based nanofibers.
PB  - University of Belgrade, Institute for Multidisciplinary Research
C3  - 6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia
T1  - Hierarchical ZnO/SnO2 heterostructures via hydrothermally assisted electrospinning technique: synthesis and photocatalytic performances
SP  - 51
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2038
ER  - 
@conference{
author = "Vojisavljević, Katarina and Vukašinović, Jelena and Počuča-Nešić, Milica and Savic, Slavica and Podlogar, Matejka and Zemljak, Olivera and Branković, Zorica",
year = "2022",
abstract = "Hierarchical nanostructures with multiporous tin oxide nanofibers (SnO2-
MPNFs) and zinc oxide nanorods (ZnO-NRs) have been synthesized by combining
electrospinning technique and hydrothermal method. A solution containing
uniformly distributed tin (Sn) and silicon (Si) species of precursors, as well as a
sacrificial polymer (PVP) was electrospun using a single-nozzle spinneret to
fabricate nanofibers. In virtue of the Kirkendall effect driven by calcination at
550 °C, the SiO2-cored SnO2 nanofibers (SnO2-SiO2-NFs) deliberated from PVP
were formed and used as backbones for further hydrothermal growth of ZnO-NRs.
By varying the hydrothermal reaction time (0.5–2 h) at the constant concentration of
SnO2-SiO2-NFs, zinc (Zn) precursor, directing agent (hexamethylenetetramine,
HMT) and aqueous ammonia, the density, length and thickness of ZnO-NRs were
controlled. Nanofibers and ZnO-NRs/SnO2-MPNFs heterostructures are confirmed
by X-ray diffraction (XRD), field-emission scanning electron microcopy (FE-SEM),
energy dispersive spectrometer (EDS), transmission electron microscopy (TEM) and
elemental mapping analysis. 
The hydrothermal treatment conducted at 90 °C in aqueous ammonia allowed:
a) selective etching of SiO2 from the SnO2-SiO2-NFs core and SiO2 trapped between
SnO2 particles, and b) effective growth of ZnO-NRs. The process resulted in
ZnO-NRs/SnO2-MPNFs heterostructures with ZnO-NRs of 1–5 μm in length
attached to SnO2-MPNFs, the shell of which was composed of ultra-fine SnO2
crystallites (~5 nm in size) and where the four porous channels create the core
instead of SiO2. Photocatalytic performance of the heterostructures was investigated
toward different organic azo-dyes (methylene blue, methyl orange) and obvious
enhancement was demonstrated in degradation of the organic pollutant, compared to
primary SnO2-based nanofibers.",
publisher = "University of Belgrade, Institute for Multidisciplinary Research",
journal = "6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia",
title = "Hierarchical ZnO/SnO2 heterostructures via hydrothermally assisted electrospinning technique: synthesis and photocatalytic performances",
pages = "51",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2038"
}
Vojisavljević, K., Vukašinović, J., Počuča-Nešić, M., Savic, S., Podlogar, M., Zemljak, O.,& Branković, Z.. (2022). Hierarchical ZnO/SnO2 heterostructures via hydrothermally assisted electrospinning technique: synthesis and photocatalytic performances. in 6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia
University of Belgrade, Institute for Multidisciplinary Research., 51.
https://hdl.handle.net/21.15107/rcub_rimsi_2038
Vojisavljević K, Vukašinović J, Počuča-Nešić M, Savic S, Podlogar M, Zemljak O, Branković Z. Hierarchical ZnO/SnO2 heterostructures via hydrothermally assisted electrospinning technique: synthesis and photocatalytic performances. in 6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia. 2022;:51.
https://hdl.handle.net/21.15107/rcub_rimsi_2038 .
Vojisavljević, Katarina, Vukašinović, Jelena, Počuča-Nešić, Milica, Savic, Slavica, Podlogar, Matejka, Zemljak, Olivera, Branković, Zorica, "Hierarchical ZnO/SnO2 heterostructures via hydrothermally assisted electrospinning technique: synthesis and photocatalytic performances" in 6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia (2022):51,
https://hdl.handle.net/21.15107/rcub_rimsi_2038 .

The defect structure and electrical properties of the spark plasma sintered antimony-doped barium stannate

Vukašinović, Jelena; Rapljenović, Željko; Počuča-Nešić, Milica; Ivek, Tomislav; Peter, Robert; Branković, Zorica; Zemljak, Olivera; Branković, Goran

(University of Belgrade, Institute for Multidisciplinary Research, 2022)

TY  - CONF
AU  - Vukašinović, Jelena
AU  - Rapljenović, Željko
AU  - Počuča-Nešić, Milica
AU  - Ivek, Tomislav
AU  - Peter, Robert
AU  - Branković, Zorica
AU  - Zemljak, Olivera
AU  - Branković, Goran
PY  - 2022
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2025
AB  - Barium stannate, BaSnO3 (BSO), is a perovskite-type alkaline earth metal
stannate with almost ideal cubic structure. Appropriate doping can alter this wide
band gap material’s electrical characteristics and change it either into a proton
conductor or n-type semiconductor. In the case of Sb doping on Sn site, BSO
becomes n-type semiconductor with high electrical conductivity at 25 °C.
The major drawback of BSO-based ceramics is its low density. The
conventional solid state procedure requires long thermal treatments with several
intermittent grinding and heating steps at temperatures up to 1600 °C [1].
To overcome this problem, we used Spark Plasma Sintering technique (SPS) for
the preparation of BaSn1-xSbxO3, (x = 0.00 (BSSO0) and 0.08 (BSSO8)) ceramic
samples. The samples structural properties were investigated using XRD (X-Ray
Powder Diffraction), XPS (X-Ray Photoelectron Spectrophotmetry) and SIMS
(Secondary Ion Mass Spectrometry) analyses. XPS analysis revealed the existence
of many structural defects, including mixed oxidation states of tin (Sn2+/Sn4+) and
oxygen vacancies (VO) in both BSSO samples.
The electrical properties of the BSSO ceramic samples were investigated in the
temperature range of 4–300 K. The presence of oxygen vacancies in the BSSO0
sample led to the absence of the standard activated semiconductor behavior,
showing almost linear temperature-dependent resistivity in the examined
temperature range. On the other hand, the BSSO8 sample showed almost temperature-independent resistivity in the range of 70–300 K. This could be a
consequence of the presence of many structural defects such as mixed oxidation
states of Sn2+/Sn4+, probably Sb3+/Sb5+ and significant amount of O- species, as well
as the presence of the low angle grain boundaries found in this sample. The BSSO8
ceramic sample could satisfy the huge demand for the linear resistors with moderate
and high conductivity, due to its low and almost constant electrical resistivity in the
wide temperature.
1. A.-M. Azad, L.L.W. Shyan, T.Y. Pang, C.H. Nee, Ceram. Int., 26 (2000) 685.
PB  - University of Belgrade, Institute for Multidisciplinary Research
C3  - 6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia
T1  - The defect structure and electrical properties of the spark plasma sintered antimony-doped barium stannate
EP  - 76
SP  - 75
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2025
ER  - 
@conference{
author = "Vukašinović, Jelena and Rapljenović, Željko and Počuča-Nešić, Milica and Ivek, Tomislav and Peter, Robert and Branković, Zorica and Zemljak, Olivera and Branković, Goran",
year = "2022",
abstract = "Barium stannate, BaSnO3 (BSO), is a perovskite-type alkaline earth metal
stannate with almost ideal cubic structure. Appropriate doping can alter this wide
band gap material’s electrical characteristics and change it either into a proton
conductor or n-type semiconductor. In the case of Sb doping on Sn site, BSO
becomes n-type semiconductor with high electrical conductivity at 25 °C.
The major drawback of BSO-based ceramics is its low density. The
conventional solid state procedure requires long thermal treatments with several
intermittent grinding and heating steps at temperatures up to 1600 °C [1].
To overcome this problem, we used Spark Plasma Sintering technique (SPS) for
the preparation of BaSn1-xSbxO3, (x = 0.00 (BSSO0) and 0.08 (BSSO8)) ceramic
samples. The samples structural properties were investigated using XRD (X-Ray
Powder Diffraction), XPS (X-Ray Photoelectron Spectrophotmetry) and SIMS
(Secondary Ion Mass Spectrometry) analyses. XPS analysis revealed the existence
of many structural defects, including mixed oxidation states of tin (Sn2+/Sn4+) and
oxygen vacancies (VO) in both BSSO samples.
The electrical properties of the BSSO ceramic samples were investigated in the
temperature range of 4–300 K. The presence of oxygen vacancies in the BSSO0
sample led to the absence of the standard activated semiconductor behavior,
showing almost linear temperature-dependent resistivity in the examined
temperature range. On the other hand, the BSSO8 sample showed almost temperature-independent resistivity in the range of 70–300 K. This could be a
consequence of the presence of many structural defects such as mixed oxidation
states of Sn2+/Sn4+, probably Sb3+/Sb5+ and significant amount of O- species, as well
as the presence of the low angle grain boundaries found in this sample. The BSSO8
ceramic sample could satisfy the huge demand for the linear resistors with moderate
and high conductivity, due to its low and almost constant electrical resistivity in the
wide temperature.
1. A.-M. Azad, L.L.W. Shyan, T.Y. Pang, C.H. Nee, Ceram. Int., 26 (2000) 685.",
publisher = "University of Belgrade, Institute for Multidisciplinary Research",
journal = "6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia",
title = "The defect structure and electrical properties of the spark plasma sintered antimony-doped barium stannate",
pages = "76-75",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2025"
}
Vukašinović, J., Rapljenović, Ž., Počuča-Nešić, M., Ivek, T., Peter, R., Branković, Z., Zemljak, O.,& Branković, G.. (2022). The defect structure and electrical properties of the spark plasma sintered antimony-doped barium stannate. in 6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia
University of Belgrade, Institute for Multidisciplinary Research., 75-76.
https://hdl.handle.net/21.15107/rcub_rimsi_2025
Vukašinović J, Rapljenović Ž, Počuča-Nešić M, Ivek T, Peter R, Branković Z, Zemljak O, Branković G. The defect structure and electrical properties of the spark plasma sintered antimony-doped barium stannate. in 6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia. 2022;:75-76.
https://hdl.handle.net/21.15107/rcub_rimsi_2025 .
Vukašinović, Jelena, Rapljenović, Željko, Počuča-Nešić, Milica, Ivek, Tomislav, Peter, Robert, Branković, Zorica, Zemljak, Olivera, Branković, Goran, "The defect structure and electrical properties of the spark plasma sintered antimony-doped barium stannate" in 6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia (2022):75-76,
https://hdl.handle.net/21.15107/rcub_rimsi_2025 .

The influence of Ti-doping on structural and multiferroic properties of yttrium manganite ceramics

Zemljak, Olivera; Luković Golić, Danijela; Počuča-Nešić, Milica; Dapčević, Aleksandra; Pajić, Damir; Šenjug, Pavla; Branković, Goran; Branković, Zorica

(Institut za multicisciplinarna istrživanja, Belgrade, Serbia, 2022)

TY  - CONF
AU  - Zemljak, Olivera
AU  - Luković Golić, Danijela
AU  - Počuča-Nešić, Milica
AU  - Dapčević, Aleksandra
AU  - Pajić, Damir
AU  - Šenjug, Pavla
AU  - Branković, Goran
AU  - Branković, Zorica
PY  - 2022
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2211
AB  - Hexagonal (P63cm) yttrium manganite, YMnO3, is a multiferroic material with
ferroelectric transition at TC ≈ 900 K and antiferromagnetic transition at TN ≈ 70 K. Multiferroic behavior attracts a lot of attention because of its potential for
various applications. The application possibilities are limited by large
microcracking and microporosity of YMnO3 ceramics.
In this work, the influence of Ti-doping on structural, ferroelectric and magnetic
properties of YMnO3 ceramics was investigated. YMn1–xTixO3+δ (x = 0, 0.04, 0.08,
0.10, 0.15, 0.20) powders were prepared using sol-gel, polymerization complex
method from citrate precursors, which were then calcinated at 900 °C for 4 h. The
ceramic samples were obtained after sintering for 2 h at: 1400 °C for YMnO3,
YMn0.96Ti0.04O3+δ, YMn0.92Ti0.08O3+δ and YMn0.90Ti0.10O3+δ; 1450 C for
YMn0.85Ti0.15O3+δ; 1470 °C for YMn0.80Ti0.20O3+δ. X-ray diffraction (XRD),
transmission and scanning electron microscopy (TEM and SEM) were used for
structural and microstructural analysis of samples. Ferroelectric measurements of
P(E) loops and leakage currents, and magnetic measurements of zero field cooled
(ZFC) and field cooled (FC) M(T) curves, as well as M(H) curves, were enabled
multiferroic characterization of ceramic samples.
The samples x = 0 and 0.04 are crystallized in a single phased hexagonal
structure, (P63cm), the samples x = 0.08 and 0.10 exhibited the presence of both
hexagonal phase and rhombohedral phase (R3c), and the samples x = 0.15 and 0.20
are crystallized in rhombohedral 1×1×3 superstructure. Ti-doped YMnO3 ceramic
samples showed reduced density of microcracks, and inter- and intragranular pores,
and large increase in relative density (greater than 90 %) for YMn1–xTixO3+δ (x =
0.10, 0.15 and 0.20) samples. Leakage currents for most of doped samples were
lower than leakage current of undoped sample, but the ferroelectric response was not
significantly improved. Doping of YMnO3 with nonmagnetic Ti4+ led to suppression
of antiferromagnetic ordering visible through decrease of the Néel temperature and
Weiss parameter and the appearance of weak ferromagnetism.
PB  - Institut za multicisciplinarna istrživanja, Belgrade, Serbia
C3  - 6th Conference of The Serbian Society for Ceramic Materials June 28-29, 2022 Belgrade, Serbia 6CSCS-2022
T1  - The influence of Ti-doping on structural and multiferroic properties of yttrium manganite ceramics
SP  - 74
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2211
ER  - 
@conference{
author = "Zemljak, Olivera and Luković Golić, Danijela and Počuča-Nešić, Milica and Dapčević, Aleksandra and Pajić, Damir and Šenjug, Pavla and Branković, Goran and Branković, Zorica",
year = "2022",
abstract = "Hexagonal (P63cm) yttrium manganite, YMnO3, is a multiferroic material with
ferroelectric transition at TC ≈ 900 K and antiferromagnetic transition at TN ≈ 70 K. Multiferroic behavior attracts a lot of attention because of its potential for
various applications. The application possibilities are limited by large
microcracking and microporosity of YMnO3 ceramics.
In this work, the influence of Ti-doping on structural, ferroelectric and magnetic
properties of YMnO3 ceramics was investigated. YMn1–xTixO3+δ (x = 0, 0.04, 0.08,
0.10, 0.15, 0.20) powders were prepared using sol-gel, polymerization complex
method from citrate precursors, which were then calcinated at 900 °C for 4 h. The
ceramic samples were obtained after sintering for 2 h at: 1400 °C for YMnO3,
YMn0.96Ti0.04O3+δ, YMn0.92Ti0.08O3+δ and YMn0.90Ti0.10O3+δ; 1450 C for
YMn0.85Ti0.15O3+δ; 1470 °C for YMn0.80Ti0.20O3+δ. X-ray diffraction (XRD),
transmission and scanning electron microscopy (TEM and SEM) were used for
structural and microstructural analysis of samples. Ferroelectric measurements of
P(E) loops and leakage currents, and magnetic measurements of zero field cooled
(ZFC) and field cooled (FC) M(T) curves, as well as M(H) curves, were enabled
multiferroic characterization of ceramic samples.
The samples x = 0 and 0.04 are crystallized in a single phased hexagonal
structure, (P63cm), the samples x = 0.08 and 0.10 exhibited the presence of both
hexagonal phase and rhombohedral phase (R3c), and the samples x = 0.15 and 0.20
are crystallized in rhombohedral 1×1×3 superstructure. Ti-doped YMnO3 ceramic
samples showed reduced density of microcracks, and inter- and intragranular pores,
and large increase in relative density (greater than 90 %) for YMn1–xTixO3+δ (x =
0.10, 0.15 and 0.20) samples. Leakage currents for most of doped samples were
lower than leakage current of undoped sample, but the ferroelectric response was not
significantly improved. Doping of YMnO3 with nonmagnetic Ti4+ led to suppression
of antiferromagnetic ordering visible through decrease of the Néel temperature and
Weiss parameter and the appearance of weak ferromagnetism.",
publisher = "Institut za multicisciplinarna istrživanja, Belgrade, Serbia",
journal = "6th Conference of The Serbian Society for Ceramic Materials June 28-29, 2022 Belgrade, Serbia 6CSCS-2022",
title = "The influence of Ti-doping on structural and multiferroic properties of yttrium manganite ceramics",
pages = "74",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2211"
}
Zemljak, O., Luković Golić, D., Počuča-Nešić, M., Dapčević, A., Pajić, D., Šenjug, P., Branković, G.,& Branković, Z.. (2022). The influence of Ti-doping on structural and multiferroic properties of yttrium manganite ceramics. in 6th Conference of The Serbian Society for Ceramic Materials June 28-29, 2022 Belgrade, Serbia 6CSCS-2022
Institut za multicisciplinarna istrživanja, Belgrade, Serbia., 74.
https://hdl.handle.net/21.15107/rcub_rimsi_2211
Zemljak O, Luković Golić D, Počuča-Nešić M, Dapčević A, Pajić D, Šenjug P, Branković G, Branković Z. The influence of Ti-doping on structural and multiferroic properties of yttrium manganite ceramics. in 6th Conference of The Serbian Society for Ceramic Materials June 28-29, 2022 Belgrade, Serbia 6CSCS-2022. 2022;:74.
https://hdl.handle.net/21.15107/rcub_rimsi_2211 .
Zemljak, Olivera, Luković Golić, Danijela, Počuča-Nešić, Milica, Dapčević, Aleksandra, Pajić, Damir, Šenjug, Pavla, Branković, Goran, Branković, Zorica, "The influence of Ti-doping on structural and multiferroic properties of yttrium manganite ceramics" in 6th Conference of The Serbian Society for Ceramic Materials June 28-29, 2022 Belgrade, Serbia 6CSCS-2022 (2022):74,
https://hdl.handle.net/21.15107/rcub_rimsi_2211 .

Titanium doped yttrium manganite: improvement of microstructural properties and peculiarities of multiferroic properties

Milošević, Olivera; Luković Golić, Danijela; Počuča-Nešić, Milica; Dapčević, Aleksandra; Šenjug, Pavla; Pajić, Damir; Radošević, Tina; Branković, Goran; Branković, Zorica

(Springer, 2022)

TY  - JOUR
AU  - Milošević, Olivera
AU  - Luković Golić, Danijela
AU  - Počuča-Nešić, Milica
AU  - Dapčević, Aleksandra
AU  - Šenjug, Pavla
AU  - Pajić, Damir
AU  - Radošević, Tina
AU  - Branković, Goran
AU  - Branković, Zorica
PY  - 2022
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1750
AB  - Yttrium manganite, YMnO3, was doped with different concentrations of titanium (x = 0, 0.04, 0.08, 0.10, 0.15, 0.20) in order to improve the microstructural and multiferroic properties. The powders were prepared using sol-gel polymerization complex method from citrate precursors. Depending on the titanium concentration, the hexagonal structure and/or the rhombohedral superstructure are present in the sintered samples. The YMn1–xTixO3+δ (x = 0.10, 0.15, 0.20) ceramic samples showed significantly reduced density of microcracks, and of inter- and intragranular pores, and relative densities greater than 90 %. The structural parameters for YMn1–xTixO3+δ (x = 0, 0.10, 0.15) were correlated with the results of magnetic and ferroelectric measurements. The most of titanium-doped samples showed a reduction of the leakage current density in comparison with undoped YMnO3, and their ferroelectric responses were slightly improved. The modifications in structural arrangement resulted in partial suppression of ideal antiferromagnetic ordering visible through decrease of the Néel temperature and Weiss parameter, as well as the appearance of weak ferromagnetism and increase of magnetization (especially, in samples x = 0.08, 0.10, 0.15). These changes in physical quantities most likely originated from incorporation of the uncompensated magnetic moments and possible spin canting induced by enhanced symmetry break of the superexchange bridges.
PB  - Springer
T2  - Journal of Sol-Gel Science and Technology
T1  - Titanium doped yttrium manganite: improvement of microstructural properties and peculiarities of multiferroic properties
EP  - 819
IS  - 3
SP  - 807
VL  - 103
DO  - 10.1007/s10971-022-05872-3
ER  - 
@article{
author = "Milošević, Olivera and Luković Golić, Danijela and Počuča-Nešić, Milica and Dapčević, Aleksandra and Šenjug, Pavla and Pajić, Damir and Radošević, Tina and Branković, Goran and Branković, Zorica",
year = "2022",
abstract = "Yttrium manganite, YMnO3, was doped with different concentrations of titanium (x = 0, 0.04, 0.08, 0.10, 0.15, 0.20) in order to improve the microstructural and multiferroic properties. The powders were prepared using sol-gel polymerization complex method from citrate precursors. Depending on the titanium concentration, the hexagonal structure and/or the rhombohedral superstructure are present in the sintered samples. The YMn1–xTixO3+δ (x = 0.10, 0.15, 0.20) ceramic samples showed significantly reduced density of microcracks, and of inter- and intragranular pores, and relative densities greater than 90 %. The structural parameters for YMn1–xTixO3+δ (x = 0, 0.10, 0.15) were correlated with the results of magnetic and ferroelectric measurements. The most of titanium-doped samples showed a reduction of the leakage current density in comparison with undoped YMnO3, and their ferroelectric responses were slightly improved. The modifications in structural arrangement resulted in partial suppression of ideal antiferromagnetic ordering visible through decrease of the Néel temperature and Weiss parameter, as well as the appearance of weak ferromagnetism and increase of magnetization (especially, in samples x = 0.08, 0.10, 0.15). These changes in physical quantities most likely originated from incorporation of the uncompensated magnetic moments and possible spin canting induced by enhanced symmetry break of the superexchange bridges.",
publisher = "Springer",
journal = "Journal of Sol-Gel Science and Technology",
title = "Titanium doped yttrium manganite: improvement of microstructural properties and peculiarities of multiferroic properties",
pages = "819-807",
number = "3",
volume = "103",
doi = "10.1007/s10971-022-05872-3"
}
Milošević, O., Luković Golić, D., Počuča-Nešić, M., Dapčević, A., Šenjug, P., Pajić, D., Radošević, T., Branković, G.,& Branković, Z.. (2022). Titanium doped yttrium manganite: improvement of microstructural properties and peculiarities of multiferroic properties. in Journal of Sol-Gel Science and Technology
Springer., 103(3), 807-819.
https://doi.org/10.1007/s10971-022-05872-3
Milošević O, Luković Golić D, Počuča-Nešić M, Dapčević A, Šenjug P, Pajić D, Radošević T, Branković G, Branković Z. Titanium doped yttrium manganite: improvement of microstructural properties and peculiarities of multiferroic properties. in Journal of Sol-Gel Science and Technology. 2022;103(3):807-819.
doi:10.1007/s10971-022-05872-3 .
Milošević, Olivera, Luković Golić, Danijela, Počuča-Nešić, Milica, Dapčević, Aleksandra, Šenjug, Pavla, Pajić, Damir, Radošević, Tina, Branković, Goran, Branković, Zorica, "Titanium doped yttrium manganite: improvement of microstructural properties and peculiarities of multiferroic properties" in Journal of Sol-Gel Science and Technology, 103, no. 3 (2022):807-819,
https://doi.org/10.1007/s10971-022-05872-3 . .
3

Ferroelectric properties of BiFeO3 ceramics with cation substitutions at Bi-site (La3+, Eu3+) and Fe-site (Nb5+, Zr4+)

Radojković, Aleksandar; Luković Golić, Danijela; JOVIĆ ORSINI, Nataša; Ćirković, Jovana; Branković, Zorica; Branković, Goran

(Linkin Science Pvt. Ltd, 2022)

TY  - CONF
AU  - Radojković, Aleksandar
AU  - Luković Golić, Danijela
AU  - JOVIĆ ORSINI, Nataša
AU  - Ćirković, Jovana
AU  - Branković, Zorica
AU  - Branković, Goran
PY  - 2022
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1738
AB  - BiFeO3 is one of the few multiferroic perovskites that exhibits magnetic and ferroelectric properties
at room temperature. However, it is also distinguished by high leakage current, low remnant electric
and magnetic polarization, and high electric coercive field. These features keep it away from any practical
use in electronics. Therefore, many attempts have been made to improve the properties of BiFeO3 by
Bi- or Fe-site doping or by both. Previous investigations suggest that doping with Nbat Fe-site can
positively affect the magnetic behavior of BiFeO3 and decrease the leakage current.
In this study, various cation substitutions at Bi-site (La3+, Eu3+) and Fe-site (Nb5+, Zr4+) were examined
to investigate their possible synergism and benefit for the ferroelectric properties. The role of the cations
with higher valence is to suppress the formation of structural defects during synthesis, such as oxygen
and bismuth vacancies. These defects are responsible for high leakage currents and, consequently, low
breakdown voltages characteristic of the pure BiFeO3. On the other hand, rare earth cations at the Bisite
usually enable densification of the ceramics in a wider range of temperatures, preventing bismuth
loss and forming defects and secondary phases during sintering. However, do pant concentrations above
10–15mol% may give rise to transition from polar, rhombohedral (R3c) to non-polar, orthorhombic
(Pnma) symmetry.
The carefully selected compositions of doped BiFeO3 were synthesized by a simple hydro-evaporation
method. The ceramics samples were characterized using X-ray diffraction (XRD) analysis, scanning
electron microscopy (SEM), and polarization techniques, including leakage current measurements.
Although the introduction of Nb5+or Zr4+decreased the leakage current, they surprisingly deteriorated
the ferroelectric properties even at concentrations as low as 1 mol%. This effect was more pronounced for
the samples containing Nb. On the contrary, both La3+ and Eu3+ (incorporated at the Bi-site) improved
the ferroelectric properties as their concentrations increased. The La-doped samples exhibited higher
remnant electric polarizations at observed electric fields. The highest remnant electric polarization of31.9
μC/cm2at 150 kV/cm was measured for Bi0.85La0.15Fe0.998Zr0.002O3, indicating the synergetic
effect of La3+ and Zr4+, which is limited to very low Zr4+concentrations.
PB  - Linkin Science Pvt. Ltd
C3  - 5TH EDITION OF NANOTECHNOLOGY, NANOMEDICINE & OPTICS PHOTONICS HYBRID CONFERENCE
T1  - Ferroelectric properties of BiFeO3 ceramics with cation substitutions at Bi-site (La3+, Eu3+) and Fe-site (Nb5+, Zr4+)
SP  - 10
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_1738
ER  - 
@conference{
author = "Radojković, Aleksandar and Luković Golić, Danijela and JOVIĆ ORSINI, Nataša and Ćirković, Jovana and Branković, Zorica and Branković, Goran",
year = "2022",
abstract = "BiFeO3 is one of the few multiferroic perovskites that exhibits magnetic and ferroelectric properties
at room temperature. However, it is also distinguished by high leakage current, low remnant electric
and magnetic polarization, and high electric coercive field. These features keep it away from any practical
use in electronics. Therefore, many attempts have been made to improve the properties of BiFeO3 by
Bi- or Fe-site doping or by both. Previous investigations suggest that doping with Nbat Fe-site can
positively affect the magnetic behavior of BiFeO3 and decrease the leakage current.
In this study, various cation substitutions at Bi-site (La3+, Eu3+) and Fe-site (Nb5+, Zr4+) were examined
to investigate their possible synergism and benefit for the ferroelectric properties. The role of the cations
with higher valence is to suppress the formation of structural defects during synthesis, such as oxygen
and bismuth vacancies. These defects are responsible for high leakage currents and, consequently, low
breakdown voltages characteristic of the pure BiFeO3. On the other hand, rare earth cations at the Bisite
usually enable densification of the ceramics in a wider range of temperatures, preventing bismuth
loss and forming defects and secondary phases during sintering. However, do pant concentrations above
10–15mol% may give rise to transition from polar, rhombohedral (R3c) to non-polar, orthorhombic
(Pnma) symmetry.
The carefully selected compositions of doped BiFeO3 were synthesized by a simple hydro-evaporation
method. The ceramics samples were characterized using X-ray diffraction (XRD) analysis, scanning
electron microscopy (SEM), and polarization techniques, including leakage current measurements.
Although the introduction of Nb5+or Zr4+decreased the leakage current, they surprisingly deteriorated
the ferroelectric properties even at concentrations as low as 1 mol%. This effect was more pronounced for
the samples containing Nb. On the contrary, both La3+ and Eu3+ (incorporated at the Bi-site) improved
the ferroelectric properties as their concentrations increased. The La-doped samples exhibited higher
remnant electric polarizations at observed electric fields. The highest remnant electric polarization of31.9
μC/cm2at 150 kV/cm was measured for Bi0.85La0.15Fe0.998Zr0.002O3, indicating the synergetic
effect of La3+ and Zr4+, which is limited to very low Zr4+concentrations.",
publisher = "Linkin Science Pvt. Ltd",
journal = "5TH EDITION OF NANOTECHNOLOGY, NANOMEDICINE & OPTICS PHOTONICS HYBRID CONFERENCE",
title = "Ferroelectric properties of BiFeO3 ceramics with cation substitutions at Bi-site (La3+, Eu3+) and Fe-site (Nb5+, Zr4+)",
pages = "10",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_1738"
}
Radojković, A., Luković Golić, D., JOVIĆ ORSINI, N., Ćirković, J., Branković, Z.,& Branković, G.. (2022). Ferroelectric properties of BiFeO3 ceramics with cation substitutions at Bi-site (La3+, Eu3+) and Fe-site (Nb5+, Zr4+). in 5TH EDITION OF NANOTECHNOLOGY, NANOMEDICINE & OPTICS PHOTONICS HYBRID CONFERENCE
Linkin Science Pvt. Ltd., 10.
https://hdl.handle.net/21.15107/rcub_rimsi_1738
Radojković A, Luković Golić D, JOVIĆ ORSINI N, Ćirković J, Branković Z, Branković G. Ferroelectric properties of BiFeO3 ceramics with cation substitutions at Bi-site (La3+, Eu3+) and Fe-site (Nb5+, Zr4+). in 5TH EDITION OF NANOTECHNOLOGY, NANOMEDICINE & OPTICS PHOTONICS HYBRID CONFERENCE. 2022;:10.
https://hdl.handle.net/21.15107/rcub_rimsi_1738 .
Radojković, Aleksandar, Luković Golić, Danijela, JOVIĆ ORSINI, Nataša, Ćirković, Jovana, Branković, Zorica, Branković, Goran, "Ferroelectric properties of BiFeO3 ceramics with cation substitutions at Bi-site (La3+, Eu3+) and Fe-site (Nb5+, Zr4+)" in 5TH EDITION OF NANOTECHNOLOGY, NANOMEDICINE & OPTICS PHOTONICS HYBRID CONFERENCE (2022):10,
https://hdl.handle.net/21.15107/rcub_rimsi_1738 .

6. Effect of Cu dopping on microstructural, thermoelectric and mechanical properties of NaCoCuO4 ceramics

Perać, Sanja; Savic, Slavica; Branković, Zorica; Bernik, Slavko; Kojic, Sanja; Vasiljevic, Dragana; Branković, Goran

(Institut za multidisciplinarna istraživanja Kneza Višeslava 1, 11000 Belgrade, Serbia, 2022)

TY  - CONF
AU  - Perać, Sanja
AU  - Savic, Slavica
AU  - Branković, Zorica
AU  - Bernik, Slavko
AU  - Kojic, Sanja
AU  - Vasiljevic, Dragana
AU  - Branković, Goran
PY  - 2022
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2301
AB  - Ceramic samples of NaCo2-xCuxO4 (x = 0, 0.01, 0.03, 0.05) were obtained after calcination of powder precursors synthesized by a mechanochemically assisted solid-state reaction method (MASSR) and a citric acid complex method (CAC). Effects of small concentrations of Cu doping and the above-mentioned syntheses procedures on the microstructural, thermoelectric and mechanical properties were observed. The electrical resistivity (ρ), the thermal conductivity (κ) and the Seebeck coefficient (S) were measured simultaneously in the temperature gradient (ΔT) between hot and cold side of the sample, and the figure of merit (ZT) was
subsequently calculated. ZT of the CAC samples was higher compared with the MASSR samples. The highest ZT value of 0.061 at ΔT = 473 K was obtained for the sample with 5 mol% of Cu prepared by the CAC method, and it was 1.7 times higher than the highest value obtained for the MASSR sample with 3 mol% of Cu
(ZT = 0.036 at ΔT = 473 K). The CAC samples showed better mechanical properties compared to the MASSR samples due to the higher hardness of the CAC samples which is a consequence of homogeneous microstructure and higher density obtained after sintering of these samples. The results confirmed that, besides the concentration of Cu, the synthesis procedure considerably affected the microstructural, thermoelectric and mechanical properties of NaCo2O4 ceramics.
PB  - Institut za multidisciplinarna istraživanja Kneza Višeslava 1, 11000 Belgrade, Serbia
C3  - 6th Conference of the Serbian Society for Ceramic Materials
T1  - 6.	Effect of Cu dopping on microstructural, thermoelectric and mechanical properties of NaCoCuO4 ceramics
SP  - 87
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2301
ER  - 
@conference{
author = "Perać, Sanja and Savic, Slavica and Branković, Zorica and Bernik, Slavko and Kojic, Sanja and Vasiljevic, Dragana and Branković, Goran",
year = "2022",
abstract = "Ceramic samples of NaCo2-xCuxO4 (x = 0, 0.01, 0.03, 0.05) were obtained after calcination of powder precursors synthesized by a mechanochemically assisted solid-state reaction method (MASSR) and a citric acid complex method (CAC). Effects of small concentrations of Cu doping and the above-mentioned syntheses procedures on the microstructural, thermoelectric and mechanical properties were observed. The electrical resistivity (ρ), the thermal conductivity (κ) and the Seebeck coefficient (S) were measured simultaneously in the temperature gradient (ΔT) between hot and cold side of the sample, and the figure of merit (ZT) was
subsequently calculated. ZT of the CAC samples was higher compared with the MASSR samples. The highest ZT value of 0.061 at ΔT = 473 K was obtained for the sample with 5 mol% of Cu prepared by the CAC method, and it was 1.7 times higher than the highest value obtained for the MASSR sample with 3 mol% of Cu
(ZT = 0.036 at ΔT = 473 K). The CAC samples showed better mechanical properties compared to the MASSR samples due to the higher hardness of the CAC samples which is a consequence of homogeneous microstructure and higher density obtained after sintering of these samples. The results confirmed that, besides the concentration of Cu, the synthesis procedure considerably affected the microstructural, thermoelectric and mechanical properties of NaCo2O4 ceramics.",
publisher = "Institut za multidisciplinarna istraživanja Kneza Višeslava 1, 11000 Belgrade, Serbia",
journal = "6th Conference of the Serbian Society for Ceramic Materials",
title = "6.	Effect of Cu dopping on microstructural, thermoelectric and mechanical properties of NaCoCuO4 ceramics",
pages = "87",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2301"
}
Perać, S., Savic, S., Branković, Z., Bernik, S., Kojic, S., Vasiljevic, D.,& Branković, G.. (2022). 6.	Effect of Cu dopping on microstructural, thermoelectric and mechanical properties of NaCoCuO4 ceramics. in 6th Conference of the Serbian Society for Ceramic Materials
Institut za multidisciplinarna istraživanja Kneza Višeslava 1, 11000 Belgrade, Serbia., 87.
https://hdl.handle.net/21.15107/rcub_rimsi_2301
Perać S, Savic S, Branković Z, Bernik S, Kojic S, Vasiljevic D, Branković G. 6.	Effect of Cu dopping on microstructural, thermoelectric and mechanical properties of NaCoCuO4 ceramics. in 6th Conference of the Serbian Society for Ceramic Materials. 2022;:87.
https://hdl.handle.net/21.15107/rcub_rimsi_2301 .
Perać, Sanja, Savic, Slavica, Branković, Zorica, Bernik, Slavko, Kojic, Sanja, Vasiljevic, Dragana, Branković, Goran, "6.	Effect of Cu dopping on microstructural, thermoelectric and mechanical properties of NaCoCuO4 ceramics" in 6th Conference of the Serbian Society for Ceramic Materials (2022):87,
https://hdl.handle.net/21.15107/rcub_rimsi_2301 .

Microstructural, Thermoelectric and Mechanical Properties of Cu Substituted NaCo2O4

Perać, Sanja; M.Savić, Slavica; Branković, Zorica; Bernik, Slavko; Radojković, Aleksandar; Kojić, Sanja; Vasiljević, Dragana; Branković, Goran

(MDPI, 2022)

TY  - JOUR
AU  - Perać, Sanja
AU  - M.Savić, Slavica
AU  - Branković, Zorica
AU  - Bernik, Slavko
AU  - Radojković, Aleksandar
AU  - Kojić, Sanja
AU  - Vasiljević, Dragana
AU  - Branković, Goran
PY  - 2022
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1561
AB  - Polycrystalline samples of NaCo2−xCuxO4 (x = 0, 0.01, 0.03, 0.05) were obtained from powder precursors synthesized by a mechanochemically assisted solid-state reaction method (MASSR) and a citric acid complex method (CAC). Ceramic samples were prepared by pressing into disc-shaped pellets and subsequently sintering at 880 °C in an argon atmosphere. Effects of low concentrations of Cu doping and the above-mentioned synthesis procedures on the thermoelectric and mechanical properties were observed. The electrical resistivity (ρ), the thermal conductivity (κ) and the Seebeck coefficient (S) were measured simultaneously in the temperature gradient (ΔT) between the hot and cold side of the sample, and the figure of merit (ZT) was subsequently calculated. The ZT of the CAC samples was higher compared with the MASSR samples. The highest ZT value of 0.061 at ΔT = 473 K was obtained for the sample with 5 mol% of Cu prepared by the CAC method. The CAC samples showed better mechanical properties compared to the MASSR samples due to the higher hardness of the CAC samples which is a consequence of homogeneous microstructure and higher density obtained during sintering of these samples. The results confirmed that, besides the concentration of Cu, the synthesis procedure considerably affected the thermoelectric and mechanical properties of NaCo2O4 (NCO) ceramics.
PB  - MDPI
T2  - Materials
T1  - Microstructural, Thermoelectric and Mechanical Properties of Cu Substituted NaCo2O4
SP  - 4470
VL  - 15
DO  - 10.3390/ma15134470
ER  - 
@article{
author = "Perać, Sanja and M.Savić, Slavica and Branković, Zorica and Bernik, Slavko and Radojković, Aleksandar and Kojić, Sanja and Vasiljević, Dragana and Branković, Goran",
year = "2022",
abstract = "Polycrystalline samples of NaCo2−xCuxO4 (x = 0, 0.01, 0.03, 0.05) were obtained from powder precursors synthesized by a mechanochemically assisted solid-state reaction method (MASSR) and a citric acid complex method (CAC). Ceramic samples were prepared by pressing into disc-shaped pellets and subsequently sintering at 880 °C in an argon atmosphere. Effects of low concentrations of Cu doping and the above-mentioned synthesis procedures on the thermoelectric and mechanical properties were observed. The electrical resistivity (ρ), the thermal conductivity (κ) and the Seebeck coefficient (S) were measured simultaneously in the temperature gradient (ΔT) between the hot and cold side of the sample, and the figure of merit (ZT) was subsequently calculated. The ZT of the CAC samples was higher compared with the MASSR samples. The highest ZT value of 0.061 at ΔT = 473 K was obtained for the sample with 5 mol% of Cu prepared by the CAC method. The CAC samples showed better mechanical properties compared to the MASSR samples due to the higher hardness of the CAC samples which is a consequence of homogeneous microstructure and higher density obtained during sintering of these samples. The results confirmed that, besides the concentration of Cu, the synthesis procedure considerably affected the thermoelectric and mechanical properties of NaCo2O4 (NCO) ceramics.",
publisher = "MDPI",
journal = "Materials",
title = "Microstructural, Thermoelectric and Mechanical Properties of Cu Substituted NaCo2O4",
pages = "4470",
volume = "15",
doi = "10.3390/ma15134470"
}
Perać, S., M.Savić, S., Branković, Z., Bernik, S., Radojković, A., Kojić, S., Vasiljević, D.,& Branković, G.. (2022). Microstructural, Thermoelectric and Mechanical Properties of Cu Substituted NaCo2O4. in Materials
MDPI., 15, 4470.
https://doi.org/10.3390/ma15134470
Perać S, M.Savić S, Branković Z, Bernik S, Radojković A, Kojić S, Vasiljević D, Branković G. Microstructural, Thermoelectric and Mechanical Properties of Cu Substituted NaCo2O4. in Materials. 2022;15:4470.
doi:10.3390/ma15134470 .
Perać, Sanja, M.Savić, Slavica, Branković, Zorica, Bernik, Slavko, Radojković, Aleksandar, Kojić, Sanja, Vasiljević, Dragana, Branković, Goran, "Microstructural, Thermoelectric and Mechanical Properties of Cu Substituted NaCo2O4" in Materials, 15 (2022):4470,
https://doi.org/10.3390/ma15134470 . .
1

Evaluation of stability and functionality of BaCe1-xInxO3-delta electrolyte in a wider range of indium concentration

Malešević, Aleksandar; Radojković, Aleksandar; Žunić, Milan; Dapčević, Aleksandra; Perać, Sanja; Branković, Zorica; Branković, Goran

(Springer, New York, 2022)

TY  - JOUR
AU  - Malešević, Aleksandar
AU  - Radojković, Aleksandar
AU  - Žunić, Milan
AU  - Dapčević, Aleksandra
AU  - Perać, Sanja
AU  - Branković, Zorica
AU  - Branković, Goran
PY  - 2022
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1545
AB  - The properties of BaCe1-xInxO3-delta (x = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, and 0.40) as proton conducting electrolyte are examined. The dense electrolyte is formed after sintering at 1300 degrees C for 5 h in air. The samples with In content > 25 mol% contain In2O3 as a secondary phase. The highest total conductivity is around 5x10(-3) S/cm for BaCe0.75In0.25O3-delta in the wet hydrogen atmosphere at 700 degrees C. After exposure to pure CO2 atmosphere at 700 degrees C for 5 h, the concentrations of at least 15 mol% In can completely suppress degradation of the electrolyte. The power density of Ni-BaCe0.75In0.25O3-delta/BaCe0.75In0.25O3-delta/LSCF-BaCe0.75In0.25O3-delta fuel cell tested in wet hydrogen atmosphere reaches 264 mW/cm(2) at 700 degrees C. This result is an indication of stability and functionality of this electrolyte and its versatility in respect to type of fuel and performing environment.
PB  - Springer, New York
T2  - Journal of Advanced Ceramics
T1  - Evaluation of stability and functionality of BaCe1-xInxO3-delta electrolyte in a wider range of indium concentration
EP  - 453
IS  - 3
SP  - 443
VL  - 11
DO  - 10.1007/s40145-021-0547-1
ER  - 
@article{
author = "Malešević, Aleksandar and Radojković, Aleksandar and Žunić, Milan and Dapčević, Aleksandra and Perać, Sanja and Branković, Zorica and Branković, Goran",
year = "2022",
abstract = "The properties of BaCe1-xInxO3-delta (x = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, and 0.40) as proton conducting electrolyte are examined. The dense electrolyte is formed after sintering at 1300 degrees C for 5 h in air. The samples with In content > 25 mol% contain In2O3 as a secondary phase. The highest total conductivity is around 5x10(-3) S/cm for BaCe0.75In0.25O3-delta in the wet hydrogen atmosphere at 700 degrees C. After exposure to pure CO2 atmosphere at 700 degrees C for 5 h, the concentrations of at least 15 mol% In can completely suppress degradation of the electrolyte. The power density of Ni-BaCe0.75In0.25O3-delta/BaCe0.75In0.25O3-delta/LSCF-BaCe0.75In0.25O3-delta fuel cell tested in wet hydrogen atmosphere reaches 264 mW/cm(2) at 700 degrees C. This result is an indication of stability and functionality of this electrolyte and its versatility in respect to type of fuel and performing environment.",
publisher = "Springer, New York",
journal = "Journal of Advanced Ceramics",
title = "Evaluation of stability and functionality of BaCe1-xInxO3-delta electrolyte in a wider range of indium concentration",
pages = "453-443",
number = "3",
volume = "11",
doi = "10.1007/s40145-021-0547-1"
}
Malešević, A., Radojković, A., Žunić, M., Dapčević, A., Perać, S., Branković, Z.,& Branković, G.. (2022). Evaluation of stability and functionality of BaCe1-xInxO3-delta electrolyte in a wider range of indium concentration. in Journal of Advanced Ceramics
Springer, New York., 11(3), 443-453.
https://doi.org/10.1007/s40145-021-0547-1
Malešević A, Radojković A, Žunić M, Dapčević A, Perać S, Branković Z, Branković G. Evaluation of stability and functionality of BaCe1-xInxO3-delta electrolyte in a wider range of indium concentration. in Journal of Advanced Ceramics. 2022;11(3):443-453.
doi:10.1007/s40145-021-0547-1 .
Malešević, Aleksandar, Radojković, Aleksandar, Žunić, Milan, Dapčević, Aleksandra, Perać, Sanja, Branković, Zorica, Branković, Goran, "Evaluation of stability and functionality of BaCe1-xInxO3-delta electrolyte in a wider range of indium concentration" in Journal of Advanced Ceramics, 11, no. 3 (2022):443-453,
https://doi.org/10.1007/s40145-021-0547-1 . .
1
9
9

Structural and Morphological Properties of Indium-doped Titanium Dioxide Nanoparticles Synthesized Using Sol–gel Process

Mazumder, J.T.; Žunić, Milan; Branković, Zorica; Tripathy, S.K.

(Springer Science and Business Media Deutschland GmbH, 2022)

TY  - CONF
AU  - Mazumder, J.T.
AU  - Žunić, Milan
AU  - Branković, Zorica
AU  - Tripathy, S.K.
PY  - 2022
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1541
AB  - In this paper, we have investigated undoped and indium-doped titanium dioxide (TiO2) nanoparticles prepared using sol–gel method. The aim of this work is to analyse the effect of indium incorporation on the structure and morphology of the materials. X-ray diffraction (XRD) pattern reveals a significant influence of In-doping on crystallinity and average grain size of the TiO2 nanoparticles. The morphology of the nanoparticles analysed using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images confirms the formation of spherical- and triangular-shaped nanoparticles with large surface area. Further, study of TEM images confirmed the obtained XRD results. Moreover, X-ray photoelectron spectroscopy (XPS) and electron diffraction spectroscopy (EDS) approve the electronic states and composition of all different chemicals existing in the samples. All the results are found and verified with the literature.
PB  - Springer Science and Business Media Deutschland GmbH
C3  - Lecture Notes in Electrical Engineering
T1  - Structural and Morphological Properties of Indium-doped Titanium Dioxide Nanoparticles Synthesized Using Sol–gel Process
EP  - 49
SP  - 41
VL  - 781
DO  - 10.1007/978-981-16-3767-4_4
ER  - 
@conference{
author = "Mazumder, J.T. and Žunić, Milan and Branković, Zorica and Tripathy, S.K.",
year = "2022",
abstract = "In this paper, we have investigated undoped and indium-doped titanium dioxide (TiO2) nanoparticles prepared using sol–gel method. The aim of this work is to analyse the effect of indium incorporation on the structure and morphology of the materials. X-ray diffraction (XRD) pattern reveals a significant influence of In-doping on crystallinity and average grain size of the TiO2 nanoparticles. The morphology of the nanoparticles analysed using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images confirms the formation of spherical- and triangular-shaped nanoparticles with large surface area. Further, study of TEM images confirmed the obtained XRD results. Moreover, X-ray photoelectron spectroscopy (XPS) and electron diffraction spectroscopy (EDS) approve the electronic states and composition of all different chemicals existing in the samples. All the results are found and verified with the literature.",
publisher = "Springer Science and Business Media Deutschland GmbH",
journal = "Lecture Notes in Electrical Engineering",
title = "Structural and Morphological Properties of Indium-doped Titanium Dioxide Nanoparticles Synthesized Using Sol–gel Process",
pages = "49-41",
volume = "781",
doi = "10.1007/978-981-16-3767-4_4"
}
Mazumder, J.T., Žunić, M., Branković, Z.,& Tripathy, S.K.. (2022). Structural and Morphological Properties of Indium-doped Titanium Dioxide Nanoparticles Synthesized Using Sol–gel Process. in Lecture Notes in Electrical Engineering
Springer Science and Business Media Deutschland GmbH., 781, 41-49.
https://doi.org/10.1007/978-981-16-3767-4_4
Mazumder J, Žunić M, Branković Z, Tripathy S. Structural and Morphological Properties of Indium-doped Titanium Dioxide Nanoparticles Synthesized Using Sol–gel Process. in Lecture Notes in Electrical Engineering. 2022;781:41-49.
doi:10.1007/978-981-16-3767-4_4 .
Mazumder, J.T., Žunić, Milan, Branković, Zorica, Tripathy, S.K., "Structural and Morphological Properties of Indium-doped Titanium Dioxide Nanoparticles Synthesized Using Sol–gel Process" in Lecture Notes in Electrical Engineering, 781 (2022):41-49,
https://doi.org/10.1007/978-981-16-3767-4_4 . .

Effects of the silver nanodots on the photocatalytic activity of mixed-phase TiO2

Tasić, Nikola; Ćirković, Jovana; Ribić, Vesna; Žunić, Milan; Dapčević, Aleksandra; Branković, Goran; Branković, Zorica

(Wiley, Hoboken, 2022)

TY  - JOUR
AU  - Tasić, Nikola
AU  - Ćirković, Jovana
AU  - Ribić, Vesna
AU  - Žunić, Milan
AU  - Dapčević, Aleksandra
AU  - Branković, Goran
AU  - Branković, Zorica
PY  - 2022
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1517
AB  - We present the synthesis and photocatalytic properties of mixed-phase TiO2 nanoparticles decorated with silver nanodots obtained by environmental-friendly wet chemical method using low molecular weight chitosan as the silver reducing agent. Structural analysis of synthesized Ag nanoparticles revealed that they crystallized in a rare hexagonal modification. High-resolution transmission electron microscopy study shows that  lt 3-nm hexagonal-Ag nanoparticles are implanted on the surface of  lt 20-nm anatase grains. Compared to Ag-free TiO2 powders, implantation with Ag results in important increase in visible light absorption. The photocatalytic activity of the samples was measured by monitoring decolorization of concentrated textile dye solution (50 mg L-1 of Reactive Orange 16) under simulated solar irradiation of 280 W m(-2). The optimum photocatalytic properties are achieved with 5 wt% of silver. Based on the collected results, the operating mechanism of the degradation process is suggested, and the effects of the silver addition are explained.
PB  - Wiley, Hoboken
T2  - Journal of the American Ceramic Society
T1  - Effects of the silver nanodots on the photocatalytic activity of mixed-phase TiO2
EP  - 347
IS  - 1
SP  - 336
VL  - 105
DO  - 10.1111/jace.18059
ER  - 
@article{
author = "Tasić, Nikola and Ćirković, Jovana and Ribić, Vesna and Žunić, Milan and Dapčević, Aleksandra and Branković, Goran and Branković, Zorica",
year = "2022",
abstract = "We present the synthesis and photocatalytic properties of mixed-phase TiO2 nanoparticles decorated with silver nanodots obtained by environmental-friendly wet chemical method using low molecular weight chitosan as the silver reducing agent. Structural analysis of synthesized Ag nanoparticles revealed that they crystallized in a rare hexagonal modification. High-resolution transmission electron microscopy study shows that  lt 3-nm hexagonal-Ag nanoparticles are implanted on the surface of  lt 20-nm anatase grains. Compared to Ag-free TiO2 powders, implantation with Ag results in important increase in visible light absorption. The photocatalytic activity of the samples was measured by monitoring decolorization of concentrated textile dye solution (50 mg L-1 of Reactive Orange 16) under simulated solar irradiation of 280 W m(-2). The optimum photocatalytic properties are achieved with 5 wt% of silver. Based on the collected results, the operating mechanism of the degradation process is suggested, and the effects of the silver addition are explained.",
publisher = "Wiley, Hoboken",
journal = "Journal of the American Ceramic Society",
title = "Effects of the silver nanodots on the photocatalytic activity of mixed-phase TiO2",
pages = "347-336",
number = "1",
volume = "105",
doi = "10.1111/jace.18059"
}
Tasić, N., Ćirković, J., Ribić, V., Žunić, M., Dapčević, A., Branković, G.,& Branković, Z.. (2022). Effects of the silver nanodots on the photocatalytic activity of mixed-phase TiO2. in Journal of the American Ceramic Society
Wiley, Hoboken., 105(1), 336-347.
https://doi.org/10.1111/jace.18059
Tasić N, Ćirković J, Ribić V, Žunić M, Dapčević A, Branković G, Branković Z. Effects of the silver nanodots on the photocatalytic activity of mixed-phase TiO2. in Journal of the American Ceramic Society. 2022;105(1):336-347.
doi:10.1111/jace.18059 .
Tasić, Nikola, Ćirković, Jovana, Ribić, Vesna, Žunić, Milan, Dapčević, Aleksandra, Branković, Goran, Branković, Zorica, "Effects of the silver nanodots on the photocatalytic activity of mixed-phase TiO2" in Journal of the American Ceramic Society, 105, no. 1 (2022):336-347,
https://doi.org/10.1111/jace.18059 . .
3
3

Ultrasonic synthesis and characterization of mesoporous monoclinic BiVO4 nanopowder

Jelić, Stefan; Ćirković, Jovana; Jovanović, Jelena; Radojković, Aleksandar; Novaković, Tatjana; Branković, Goran; Branković, Zorica

(Institut za multidisciplinarna istraživanja Kneza Višeslava 1, 11000 Belgrade, Serbia, 2022)

TY  - CONF
AU  - Jelić, Stefan
AU  - Ćirković, Jovana
AU  - Jovanović, Jelena
AU  - Radojković, Aleksandar
AU  - Novaković, Tatjana
AU  - Branković, Goran
AU  - Branković, Zorica
PY  - 2022
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1776
AB  - The BiVO4 sample was successfully synthesized from a mixture of ammonium vanadate, bismuth(III) nitrate, and nitric acid exposed to ultrasound irradiation. Structure, microstructure and optical properties of the obtained BiVO4 nanopowder were investigated. X-ray diffraction (XRD) analysis confirmed single phase monoclinic lattice system with average crystallite size of 50 nm in diameter. Scanning electron microscopy (SEM) micrographs revealed the tendency of crystallites to agglomerate forming larger irregular sub-micron spheres. Brunauer-Emmett-Teller (BET) method was used to estimate the specific surface area of the sample and determine pore shape and size. UV–vis spectroscopy measurements have revealed favorably high absorbance of the visible light with the calculated band-gap value of 2.48 eV. Calculated values of valence and conducting band energies are +2.77 eV and +0.29 eV respectively, suggested that BiVO4 can be used for photocatalytic degradation under sunlight irradiation as evident from the UV–vis spectrum.
PB  - Institut za multidisciplinarna istraživanja Kneza Višeslava 1, 11000 Belgrade, Serbia
C3  - The 6 th Conference of The Serbian Society for Ceramic Materials: 6CSCS-2022, Belgrade, Serbia
T1  - Ultrasonic synthesis and characterization of mesoporous monoclinic BiVO4 nanopowder
SP  - 64
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_1776
ER  - 
@conference{
author = "Jelić, Stefan and Ćirković, Jovana and Jovanović, Jelena and Radojković, Aleksandar and Novaković, Tatjana and Branković, Goran and Branković, Zorica",
year = "2022",
abstract = "The BiVO4 sample was successfully synthesized from a mixture of ammonium vanadate, bismuth(III) nitrate, and nitric acid exposed to ultrasound irradiation. Structure, microstructure and optical properties of the obtained BiVO4 nanopowder were investigated. X-ray diffraction (XRD) analysis confirmed single phase monoclinic lattice system with average crystallite size of 50 nm in diameter. Scanning electron microscopy (SEM) micrographs revealed the tendency of crystallites to agglomerate forming larger irregular sub-micron spheres. Brunauer-Emmett-Teller (BET) method was used to estimate the specific surface area of the sample and determine pore shape and size. UV–vis spectroscopy measurements have revealed favorably high absorbance of the visible light with the calculated band-gap value of 2.48 eV. Calculated values of valence and conducting band energies are +2.77 eV and +0.29 eV respectively, suggested that BiVO4 can be used for photocatalytic degradation under sunlight irradiation as evident from the UV–vis spectrum.",
publisher = "Institut za multidisciplinarna istraživanja Kneza Višeslava 1, 11000 Belgrade, Serbia",
journal = "The 6 th Conference of The Serbian Society for Ceramic Materials: 6CSCS-2022, Belgrade, Serbia",
title = "Ultrasonic synthesis and characterization of mesoporous monoclinic BiVO4 nanopowder",
pages = "64",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_1776"
}
Jelić, S., Ćirković, J., Jovanović, J., Radojković, A., Novaković, T., Branković, G.,& Branković, Z.. (2022). Ultrasonic synthesis and characterization of mesoporous monoclinic BiVO4 nanopowder. in The 6 th Conference of The Serbian Society for Ceramic Materials: 6CSCS-2022, Belgrade, Serbia
Institut za multidisciplinarna istraživanja Kneza Višeslava 1, 11000 Belgrade, Serbia., 64.
https://hdl.handle.net/21.15107/rcub_rimsi_1776
Jelić S, Ćirković J, Jovanović J, Radojković A, Novaković T, Branković G, Branković Z. Ultrasonic synthesis and characterization of mesoporous monoclinic BiVO4 nanopowder. in The 6 th Conference of The Serbian Society for Ceramic Materials: 6CSCS-2022, Belgrade, Serbia. 2022;:64.
https://hdl.handle.net/21.15107/rcub_rimsi_1776 .
Jelić, Stefan, Ćirković, Jovana, Jovanović, Jelena, Radojković, Aleksandar, Novaković, Tatjana, Branković, Goran, Branković, Zorica, "Ultrasonic synthesis and characterization of mesoporous monoclinic BiVO4 nanopowder" in The 6 th Conference of The Serbian Society for Ceramic Materials: 6CSCS-2022, Belgrade, Serbia (2022):64,
https://hdl.handle.net/21.15107/rcub_rimsi_1776 .