Slovenian Research AgencySlovenian Research Agency - Slovenia [P2-0084]

Link to this page

Slovenian Research AgencySlovenian Research Agency - Slovenia [P2-0084]

Authors

Publications

The structural, electrical and optical properties of spark plasma sintered BaSn1-xSbxO3 ceramics

Mitrović, Jelena; Počuča-Nešić, Milica; Luković Golić, Danijela; Ribić, Vesna; Branković, Zorica; Savić, Slavica M.; Dapčević, Aleksandra; Bernik, Slavko; Podlogar, Matejka; Kocen, Matej; Rapljenović, Zeljko; Ivek, Tomislav; Lazović, Vladimir; Dojčinović, Biljana; Branković, Goran

(Elsevier Sci Ltd, Oxford, 2020)

TY  - JOUR
AU  - Mitrović, Jelena
AU  - Počuča-Nešić, Milica
AU  - Luković Golić, Danijela
AU  - Ribić, Vesna
AU  - Branković, Zorica
AU  - Savić, Slavica M.
AU  - Dapčević, Aleksandra
AU  - Bernik, Slavko
AU  - Podlogar, Matejka
AU  - Kocen, Matej
AU  - Rapljenović, Zeljko
AU  - Ivek, Tomislav
AU  - Lazović, Vladimir
AU  - Dojčinović, Biljana
AU  - Branković, Goran
PY  - 2020
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1363
AB  - Antimony doped barium-stannate dense ceramic materials were synthesized using spark plasma sintering technique out of mechanically activated precursor powders. The influence of various Sb concentrations (x = 0.00 - 0.10) on properties of BaSn1-xSbxO3 ceramics was investigated. Relative densities of prepared samples were in the range of (79-96) %. TEM analysis revealed the presence of many dislocations in undoped BaSnO3, and their significant reduction upon doping with Sb. All samples except BaSn0.92Sb0.08O3 exhibit non-linear I-U characteristic, typical for semiconductors with potential barrier at grain boundaries. Low angle grain boundaries found only in BaSn0.92Sb0.08O3 caused the loss of potential barrier at grain boundaries which was confirmed by AC impedance spectroscopy measurements. Consequently, BaSn0.92Sb0.08O3 showed the lowest electrical resistivity and linear I-U characteristic. UV-vis analysis confirmed the increasing of band gap (Burstein-Moss shift) values in all doped samples.
PB  - Elsevier Sci Ltd, Oxford
T2  - Journal of the European Ceramic Society
T1  - The structural, electrical and optical properties of spark plasma sintered BaSn1-xSbxO3 ceramics
EP  - 5575
IS  - 15
SP  - 5566
VL  - 40
DO  - 10.1016/j.jeurceramsoc.2020.06.062
ER  - 
@article{
author = "Mitrović, Jelena and Počuča-Nešić, Milica and Luković Golić, Danijela and Ribić, Vesna and Branković, Zorica and Savić, Slavica M. and Dapčević, Aleksandra and Bernik, Slavko and Podlogar, Matejka and Kocen, Matej and Rapljenović, Zeljko and Ivek, Tomislav and Lazović, Vladimir and Dojčinović, Biljana and Branković, Goran",
year = "2020",
abstract = "Antimony doped barium-stannate dense ceramic materials were synthesized using spark plasma sintering technique out of mechanically activated precursor powders. The influence of various Sb concentrations (x = 0.00 - 0.10) on properties of BaSn1-xSbxO3 ceramics was investigated. Relative densities of prepared samples were in the range of (79-96) %. TEM analysis revealed the presence of many dislocations in undoped BaSnO3, and their significant reduction upon doping with Sb. All samples except BaSn0.92Sb0.08O3 exhibit non-linear I-U characteristic, typical for semiconductors with potential barrier at grain boundaries. Low angle grain boundaries found only in BaSn0.92Sb0.08O3 caused the loss of potential barrier at grain boundaries which was confirmed by AC impedance spectroscopy measurements. Consequently, BaSn0.92Sb0.08O3 showed the lowest electrical resistivity and linear I-U characteristic. UV-vis analysis confirmed the increasing of band gap (Burstein-Moss shift) values in all doped samples.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Journal of the European Ceramic Society",
title = "The structural, electrical and optical properties of spark plasma sintered BaSn1-xSbxO3 ceramics",
pages = "5575-5566",
number = "15",
volume = "40",
doi = "10.1016/j.jeurceramsoc.2020.06.062"
}
Mitrović, J., Počuča-Nešić, M., Luković Golić, D., Ribić, V., Branković, Z., Savić, S. M., Dapčević, A., Bernik, S., Podlogar, M., Kocen, M., Rapljenović, Z., Ivek, T., Lazović, V., Dojčinović, B.,& Branković, G.. (2020). The structural, electrical and optical properties of spark plasma sintered BaSn1-xSbxO3 ceramics. in Journal of the European Ceramic Society
Elsevier Sci Ltd, Oxford., 40(15), 5566-5575.
https://doi.org/10.1016/j.jeurceramsoc.2020.06.062
Mitrović J, Počuča-Nešić M, Luković Golić D, Ribić V, Branković Z, Savić SM, Dapčević A, Bernik S, Podlogar M, Kocen M, Rapljenović Z, Ivek T, Lazović V, Dojčinović B, Branković G. The structural, electrical and optical properties of spark plasma sintered BaSn1-xSbxO3 ceramics. in Journal of the European Ceramic Society. 2020;40(15):5566-5575.
doi:10.1016/j.jeurceramsoc.2020.06.062 .
Mitrović, Jelena, Počuča-Nešić, Milica, Luković Golić, Danijela, Ribić, Vesna, Branković, Zorica, Savić, Slavica M., Dapčević, Aleksandra, Bernik, Slavko, Podlogar, Matejka, Kocen, Matej, Rapljenović, Zeljko, Ivek, Tomislav, Lazović, Vladimir, Dojčinović, Biljana, Branković, Goran, "The structural, electrical and optical properties of spark plasma sintered BaSn1-xSbxO3 ceramics" in Journal of the European Ceramic Society, 40, no. 15 (2020):5566-5575,
https://doi.org/10.1016/j.jeurceramsoc.2020.06.062 . .
2
3

New inversion boundary structure in Sb-doped ZnO predicted by DFT calculations and confirmed by experimental HRTEM

Ribić, Vesna; Recnik, Aleksander; Komelj, Matej; Kokalj, Anton; Branković, Zorica; Zlatović, Mario; Branković, Goran

(Pergamon-Elsevier Science Ltd, Oxford, 2020)

TY  - JOUR
AU  - Ribić, Vesna
AU  - Recnik, Aleksander
AU  - Komelj, Matej
AU  - Kokalj, Anton
AU  - Branković, Zorica
AU  - Zlatović, Mario
AU  - Branković, Goran
PY  - 2020
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1376
AB  - Today, ab-initio calculations are becoming a powerful tool to perform virtual experiments that have the capacity to predict and to reproduce experimentally observed non-periodic features, such as interfaces, that are responsible for quantum properties of materials. In our paper we investigate 2D quantum-well structures, known as inversion boundaries OM. Combining atomistic modeling, DFT calculations and HRTEM analysis we provide a new fundamental insight into the structure and stability of Sb-rich basal-plane IBs in ZnO. DFT screening for potential IB model was based on the known stacking deviations in originating wurtzite structure. The results show that the model with A beta-B alpha-A beta C-gamma B-beta C sequence (IB3) is the most stable translation for Sb-doping, as opposed to previously accepted A beta-B alpha-A beta C-gamma A-alpha C (IB2) model. The key to the stability of IB structures has been found to lie in their cationic stacking. We show that the energies of constituting stacking segments can be used to predict the stability of new IB structures without the need of further ab-initio calculations. DFT optimized models of IBs accurately predict the experimentally observed IB structures with lateral relaxations down to a precision of similar to 1 pm. The newly determined cation sublattice expansions for experimentally confirmed IB2 and IB3 models, Delta(IB(zn-zn)) are +81 pm and +77 pm, whereas the corresponding O-sublattice contractions Delta(IB(0-0)) are -53 pm and -57 pm, respectively. The refined structures will help to solve open questions related to their role in electron transport, phonon scattering, p-type conductivity, affinity of dopants to generate IBs and the underlying formation mechanisms, whereas the excellent match between the calculations and experiment demonstrated in our study opens new perspectives for prediction of such properties from first principles.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Acta Materialia
T1  - New inversion boundary structure in Sb-doped ZnO predicted by DFT calculations and confirmed by experimental HRTEM
EP  - 648
SP  - 633
VL  - 199
DO  - 10.1016/j.actamat.2020.08.035
ER  - 
@article{
author = "Ribić, Vesna and Recnik, Aleksander and Komelj, Matej and Kokalj, Anton and Branković, Zorica and Zlatović, Mario and Branković, Goran",
year = "2020",
abstract = "Today, ab-initio calculations are becoming a powerful tool to perform virtual experiments that have the capacity to predict and to reproduce experimentally observed non-periodic features, such as interfaces, that are responsible for quantum properties of materials. In our paper we investigate 2D quantum-well structures, known as inversion boundaries OM. Combining atomistic modeling, DFT calculations and HRTEM analysis we provide a new fundamental insight into the structure and stability of Sb-rich basal-plane IBs in ZnO. DFT screening for potential IB model was based on the known stacking deviations in originating wurtzite structure. The results show that the model with A beta-B alpha-A beta C-gamma B-beta C sequence (IB3) is the most stable translation for Sb-doping, as opposed to previously accepted A beta-B alpha-A beta C-gamma A-alpha C (IB2) model. The key to the stability of IB structures has been found to lie in their cationic stacking. We show that the energies of constituting stacking segments can be used to predict the stability of new IB structures without the need of further ab-initio calculations. DFT optimized models of IBs accurately predict the experimentally observed IB structures with lateral relaxations down to a precision of similar to 1 pm. The newly determined cation sublattice expansions for experimentally confirmed IB2 and IB3 models, Delta(IB(zn-zn)) are +81 pm and +77 pm, whereas the corresponding O-sublattice contractions Delta(IB(0-0)) are -53 pm and -57 pm, respectively. The refined structures will help to solve open questions related to their role in electron transport, phonon scattering, p-type conductivity, affinity of dopants to generate IBs and the underlying formation mechanisms, whereas the excellent match between the calculations and experiment demonstrated in our study opens new perspectives for prediction of such properties from first principles.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Acta Materialia",
title = "New inversion boundary structure in Sb-doped ZnO predicted by DFT calculations and confirmed by experimental HRTEM",
pages = "648-633",
volume = "199",
doi = "10.1016/j.actamat.2020.08.035"
}
Ribić, V., Recnik, A., Komelj, M., Kokalj, A., Branković, Z., Zlatović, M.,& Branković, G.. (2020). New inversion boundary structure in Sb-doped ZnO predicted by DFT calculations and confirmed by experimental HRTEM. in Acta Materialia
Pergamon-Elsevier Science Ltd, Oxford., 199, 633-648.
https://doi.org/10.1016/j.actamat.2020.08.035
Ribić V, Recnik A, Komelj M, Kokalj A, Branković Z, Zlatović M, Branković G. New inversion boundary structure in Sb-doped ZnO predicted by DFT calculations and confirmed by experimental HRTEM. in Acta Materialia. 2020;199:633-648.
doi:10.1016/j.actamat.2020.08.035 .
Ribić, Vesna, Recnik, Aleksander, Komelj, Matej, Kokalj, Anton, Branković, Zorica, Zlatović, Mario, Branković, Goran, "New inversion boundary structure in Sb-doped ZnO predicted by DFT calculations and confirmed by experimental HRTEM" in Acta Materialia, 199 (2020):633-648,
https://doi.org/10.1016/j.actamat.2020.08.035 . .
1
16
8
16