Stanković, Dalibor M.

Link to this page

Authority KeyName Variants
orcid::0000-0001-7465-1373
  • Stanković, Dalibor M. (8)
  • Stanković, Dalibor (1)
Projects

Author's Bibliography

A three-step process of manganese acquisition and storage in the microalga Chlorella sorokiniana

Vojvodić, Snežana; Dimitrijević, Milena; Žižić, Milan; Dučić, Tanja; AQUILANTI, Giuliana; Stanić, Marina; Zechmann, Bernd; Danilović Luković, Jelena; Stanković, Dalibor M.; Opačić, Miloš; Morina, Arian; Pittman, Jon K.; Spasojević, Ivan

(Oxford University Press, 2023)

TY  - JOUR
AU  - Vojvodić, Snežana
AU  - Dimitrijević, Milena
AU  - Žižić, Milan
AU  - Dučić, Tanja
AU  - AQUILANTI, Giuliana
AU  - Stanić, Marina
AU  - Zechmann, Bernd
AU  - Danilović Luković, Jelena
AU  - Stanković, Dalibor M.
AU  - Opačić, Miloš
AU  - Morina, Arian
AU  - Pittman, Jon K.
AU  - Spasojević, Ivan
PY  - 2023
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2378
AB  - Metabolism of metals in microalgae and adaptation to metal excess are of significant environmental importance. We report a three-step mechanism that the green microalga Chlorella sorokiniana activates during the acquisition of and adaptation to manganese (Mn), which is both an essential trace metal and a pollutant of waters. In the early stage, Mn2+ was mainly bound to membrane phospholipids and phosphates in released mucilage. The outer cell wall
was reorganized and lipids were accumulated, with a relative increase in lipid saturation. Intracellular redox settings were rapidly altered in the presence of Mn excess, with increased production of reactive oxygen species that resulted in lipid peroxidation and a decrease in the concentration of thiols. In the later stage, Mn2+ was chelated by polyphosphates and accumulated in the cells. The structure of the inner cell wall was modified and the redox milieu established a new balance. Polyphosphates serve as a transient Mn2+ storage ligand, as proposed previously. In the final stage, Mn was stored in multivalent Mn clusters that resemble the structure of the tetramanganese–calcium core of the oxygen-evolving complex. The present findings elucidate the bioinorganic chemistry and metabolism of Mn in microalgae, and may shed new light on water-splitting Mn clusters.
PB  - Oxford University Press
T2  - Journal of Experimental Botany
T1  - A three-step process of manganese acquisition and storage in the microalga Chlorella sorokiniana
EP  - 1122
IS  - 3
SP  - 1107
VL  - 74
DO  - 10.1093/jxb/erac472
ER  - 
@article{
author = "Vojvodić, Snežana and Dimitrijević, Milena and Žižić, Milan and Dučić, Tanja and AQUILANTI, Giuliana and Stanić, Marina and Zechmann, Bernd and Danilović Luković, Jelena and Stanković, Dalibor M. and Opačić, Miloš and Morina, Arian and Pittman, Jon K. and Spasojević, Ivan",
year = "2023",
abstract = "Metabolism of metals in microalgae and adaptation to metal excess are of significant environmental importance. We report a three-step mechanism that the green microalga Chlorella sorokiniana activates during the acquisition of and adaptation to manganese (Mn), which is both an essential trace metal and a pollutant of waters. In the early stage, Mn2+ was mainly bound to membrane phospholipids and phosphates in released mucilage. The outer cell wall
was reorganized and lipids were accumulated, with a relative increase in lipid saturation. Intracellular redox settings were rapidly altered in the presence of Mn excess, with increased production of reactive oxygen species that resulted in lipid peroxidation and a decrease in the concentration of thiols. In the later stage, Mn2+ was chelated by polyphosphates and accumulated in the cells. The structure of the inner cell wall was modified and the redox milieu established a new balance. Polyphosphates serve as a transient Mn2+ storage ligand, as proposed previously. In the final stage, Mn was stored in multivalent Mn clusters that resemble the structure of the tetramanganese–calcium core of the oxygen-evolving complex. The present findings elucidate the bioinorganic chemistry and metabolism of Mn in microalgae, and may shed new light on water-splitting Mn clusters.",
publisher = "Oxford University Press",
journal = "Journal of Experimental Botany",
title = "A three-step process of manganese acquisition and storage in the microalga Chlorella sorokiniana",
pages = "1122-1107",
number = "3",
volume = "74",
doi = "10.1093/jxb/erac472"
}
Vojvodić, S., Dimitrijević, M., Žižić, M., Dučić, T., AQUILANTI, G., Stanić, M., Zechmann, B., Danilović Luković, J., Stanković, D. M., Opačić, M., Morina, A., Pittman, J. K.,& Spasojević, I.. (2023). A three-step process of manganese acquisition and storage in the microalga Chlorella sorokiniana. in Journal of Experimental Botany
Oxford University Press., 74(3), 1107-1122.
https://doi.org/10.1093/jxb/erac472
Vojvodić S, Dimitrijević M, Žižić M, Dučić T, AQUILANTI G, Stanić M, Zechmann B, Danilović Luković J, Stanković DM, Opačić M, Morina A, Pittman JK, Spasojević I. A three-step process of manganese acquisition and storage in the microalga Chlorella sorokiniana. in Journal of Experimental Botany. 2023;74(3):1107-1122.
doi:10.1093/jxb/erac472 .
Vojvodić, Snežana, Dimitrijević, Milena, Žižić, Milan, Dučić, Tanja, AQUILANTI, Giuliana, Stanić, Marina, Zechmann, Bernd, Danilović Luković, Jelena, Stanković, Dalibor M., Opačić, Miloš, Morina, Arian, Pittman, Jon K., Spasojević, Ivan, "A three-step process of manganese acquisition and storage in the microalga Chlorella sorokiniana" in Journal of Experimental Botany, 74, no. 3 (2023):1107-1122,
https://doi.org/10.1093/jxb/erac472 . .
1
1

Redox changes in microalga Chlorella sorokiniana exposed to high concentrations of Mn(II)

Vojvodić, Snežana; Dimitrijević, Milena; Dučić, Tanja; Stanković, Dalibor; Opačić, Miloš; Stanić, Marina; Žižić, Milan; Spasojević, Ivan

(Faculty of Chemistry, Serbian Biochemical Society, 2021)

TY  - CONF
AU  - Vojvodić, Snežana
AU  - Dimitrijević, Milena
AU  - Dučić, Tanja
AU  - Stanković, Dalibor
AU  - Opačić, Miloš
AU  - Stanić, Marina
AU  - Žižić, Milan
AU  - Spasojević, Ivan
PY  - 2021
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2391
AB  - Microalgae can be implemented in the remediation of mining and other metal-rich wastewaters as pioneer species. On the other hand, metals affect aquatic ecosystems through the negative impact on microalgae which are the primary producers of O2 and biomass. Redox processes represent an important component of the mechanisms of interaction of microalgae with transition metals. We analyzed the redox changes in Chlorella sorokiniana culture that are induced by high levels of Mn(II). Mn is the key metal pollutant, with five main oxidation forms that can bind to a variety of different ligands. Mn (1 mM) induced a significant increase in the intracellular production of reactive oxygen species. The boost appears to show two phases – the first is very fast (observed after 15 min), whereas the second starts after 1 h reaching a plateau at 24 h. The concentration of reduced thiols, which represent important targets of oxidation, appears to parallel this trend. Total glutathione concentration shows a drop at 1 h and recovery at 24 h. This implicates that either a glutathionylation of proteins or a synthesis of phytochelatins - sulfur-rich short-chain peptides that sequester metals, takes place early in the response to Mn. Further, FTIR analysis showed that Mn induced a decrease of C=C levels and CH2/CH3 ratio implicating increased lipid peroxidation. Finally, Mn ions that were accumulated in the cells were extracted with nitric oxide and analyzed by cyclic voltammetry. Two redox forms were detected - Mn(II) and Mn(IV). The latter appears to prevail at higher manganese concentrations and longer periods of incubation. These results demonstrate that redox response of C. sorokiniana to high Mn levels involves at least two phases. Initially, Mn(II) enters the cells and induces pro-oxidative changes that are mitigated by glutathione-based antioxidative defense. Later on, redox homeostasis is reestablished with concomitant inactivation of Mn in the more stable redox form.
PB  - Faculty of Chemistry, Serbian Biochemical Society
C3  - Serbian Biochemical Society Tenth Conference, “Biochemical Insights into Molecular Mechanisms”. 24.09.2021. Kragujevac, Serbia
T1  - Redox changes in microalga Chlorella sorokiniana exposed to high concentrations of Mn(II)
EP  - 174
SP  - 174
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2391
ER  - 
@conference{
author = "Vojvodić, Snežana and Dimitrijević, Milena and Dučić, Tanja and Stanković, Dalibor and Opačić, Miloš and Stanić, Marina and Žižić, Milan and Spasojević, Ivan",
year = "2021",
abstract = "Microalgae can be implemented in the remediation of mining and other metal-rich wastewaters as pioneer species. On the other hand, metals affect aquatic ecosystems through the negative impact on microalgae which are the primary producers of O2 and biomass. Redox processes represent an important component of the mechanisms of interaction of microalgae with transition metals. We analyzed the redox changes in Chlorella sorokiniana culture that are induced by high levels of Mn(II). Mn is the key metal pollutant, with five main oxidation forms that can bind to a variety of different ligands. Mn (1 mM) induced a significant increase in the intracellular production of reactive oxygen species. The boost appears to show two phases – the first is very fast (observed after 15 min), whereas the second starts after 1 h reaching a plateau at 24 h. The concentration of reduced thiols, which represent important targets of oxidation, appears to parallel this trend. Total glutathione concentration shows a drop at 1 h and recovery at 24 h. This implicates that either a glutathionylation of proteins or a synthesis of phytochelatins - sulfur-rich short-chain peptides that sequester metals, takes place early in the response to Mn. Further, FTIR analysis showed that Mn induced a decrease of C=C levels and CH2/CH3 ratio implicating increased lipid peroxidation. Finally, Mn ions that were accumulated in the cells were extracted with nitric oxide and analyzed by cyclic voltammetry. Two redox forms were detected - Mn(II) and Mn(IV). The latter appears to prevail at higher manganese concentrations and longer periods of incubation. These results demonstrate that redox response of C. sorokiniana to high Mn levels involves at least two phases. Initially, Mn(II) enters the cells and induces pro-oxidative changes that are mitigated by glutathione-based antioxidative defense. Later on, redox homeostasis is reestablished with concomitant inactivation of Mn in the more stable redox form.",
publisher = "Faculty of Chemistry, Serbian Biochemical Society",
journal = "Serbian Biochemical Society Tenth Conference, “Biochemical Insights into Molecular Mechanisms”. 24.09.2021. Kragujevac, Serbia",
title = "Redox changes in microalga Chlorella sorokiniana exposed to high concentrations of Mn(II)",
pages = "174-174",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2391"
}
Vojvodić, S., Dimitrijević, M., Dučić, T., Stanković, D., Opačić, M., Stanić, M., Žižić, M.,& Spasojević, I.. (2021). Redox changes in microalga Chlorella sorokiniana exposed to high concentrations of Mn(II). in Serbian Biochemical Society Tenth Conference, “Biochemical Insights into Molecular Mechanisms”. 24.09.2021. Kragujevac, Serbia
Faculty of Chemistry, Serbian Biochemical Society., 174-174.
https://hdl.handle.net/21.15107/rcub_rimsi_2391
Vojvodić S, Dimitrijević M, Dučić T, Stanković D, Opačić M, Stanić M, Žižić M, Spasojević I. Redox changes in microalga Chlorella sorokiniana exposed to high concentrations of Mn(II). in Serbian Biochemical Society Tenth Conference, “Biochemical Insights into Molecular Mechanisms”. 24.09.2021. Kragujevac, Serbia. 2021;:174-174.
https://hdl.handle.net/21.15107/rcub_rimsi_2391 .
Vojvodić, Snežana, Dimitrijević, Milena, Dučić, Tanja, Stanković, Dalibor, Opačić, Miloš, Stanić, Marina, Žižić, Milan, Spasojević, Ivan, "Redox changes in microalga Chlorella sorokiniana exposed to high concentrations of Mn(II)" in Serbian Biochemical Society Tenth Conference, “Biochemical Insights into Molecular Mechanisms”. 24.09.2021. Kragujevac, Serbia (2021):174-174,
https://hdl.handle.net/21.15107/rcub_rimsi_2391 .

Ferrous iron binding to epinephrine promotes the oxidation of iron and impedes activation of adrenergic receptors

Korać Jačić, Jelena; Nikolić, Ljiljana M.; Stanković, Dalibor M.; Opačić, Miloš; Dimitrijević, Milena; Savić, Danijela Z; Grguric-Sipka, Sanja; Spasojević, Ivan; Bogdanović Pristov, Jelena

(Elsevier Science Inc, New York, 2020)

TY  - JOUR
AU  - Korać Jačić, Jelena
AU  - Nikolić, Ljiljana M.
AU  - Stanković, Dalibor M.
AU  - Opačić, Miloš
AU  - Dimitrijević, Milena
AU  - Savić, Danijela Z
AU  - Grguric-Sipka, Sanja
AU  - Spasojević, Ivan
AU  - Bogdanović Pristov, Jelena
PY  - 2020
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1344
AB  - Upon release in response to stress, epinephrine (Epi) may interact with labile iron pool in human plasma with potentially important (patho)physiological consequences. We have shown that Epi and Fe3+ build stable 1:1 high-spin bidentate complex at physiological pH, and that Epi does not undergo degradation in the presence of iron. However, the interactions of Epi with the more soluble Fe2+, and the impact of iron on biological activity of Epi are still not known. Herein we showed that Epi and Fe2+ build colorless complex which is stable under anaerobic conditions. In the presence of O-2, Epi promoted the oxidation of Fe2+ and the formation of Epi-Fe3+ complex. Cyclic voltammetry showed that mid-point potential of Epi-Fe2+ complex is very low (-582 mV vs. standard hydrogen electrode), which explains catalyzed oxidation of Fe2+. Next, we examined the impact of iron binding on biological performance of Epi using patch clamping in cell culture with constitutive expression of adrenergic receptors. Epi alone evoked an increase of outward currents, whereas Epi in the complex with Fe3+ did not. This implies that the binding of Epi to adrenergic receptors and their activation is prevented by the formation of complex with iron. Pro-oxidative activity of Epi-Fe2+ complex may represent a link between chronic stress and cardiovascular problems. On the other hand, labile iron could serve as a modulator of biological activity of ligands. Such interactions may be important in human pathologies that are related to iron overload or deficiency.
PB  - Elsevier Science Inc, New York
T2  - Free Radical Biology and Medicine
T1  - Ferrous iron binding to epinephrine promotes the oxidation of iron and impedes activation of adrenergic receptors
EP  - 127
SP  - 123
VL  - 148
DO  - 10.1016/j.freeradbiomed.2020.01.001
ER  - 
@article{
author = "Korać Jačić, Jelena and Nikolić, Ljiljana M. and Stanković, Dalibor M. and Opačić, Miloš and Dimitrijević, Milena and Savić, Danijela Z and Grguric-Sipka, Sanja and Spasojević, Ivan and Bogdanović Pristov, Jelena",
year = "2020",
abstract = "Upon release in response to stress, epinephrine (Epi) may interact with labile iron pool in human plasma with potentially important (patho)physiological consequences. We have shown that Epi and Fe3+ build stable 1:1 high-spin bidentate complex at physiological pH, and that Epi does not undergo degradation in the presence of iron. However, the interactions of Epi with the more soluble Fe2+, and the impact of iron on biological activity of Epi are still not known. Herein we showed that Epi and Fe2+ build colorless complex which is stable under anaerobic conditions. In the presence of O-2, Epi promoted the oxidation of Fe2+ and the formation of Epi-Fe3+ complex. Cyclic voltammetry showed that mid-point potential of Epi-Fe2+ complex is very low (-582 mV vs. standard hydrogen electrode), which explains catalyzed oxidation of Fe2+. Next, we examined the impact of iron binding on biological performance of Epi using patch clamping in cell culture with constitutive expression of adrenergic receptors. Epi alone evoked an increase of outward currents, whereas Epi in the complex with Fe3+ did not. This implies that the binding of Epi to adrenergic receptors and their activation is prevented by the formation of complex with iron. Pro-oxidative activity of Epi-Fe2+ complex may represent a link between chronic stress and cardiovascular problems. On the other hand, labile iron could serve as a modulator of biological activity of ligands. Such interactions may be important in human pathologies that are related to iron overload or deficiency.",
publisher = "Elsevier Science Inc, New York",
journal = "Free Radical Biology and Medicine",
title = "Ferrous iron binding to epinephrine promotes the oxidation of iron and impedes activation of adrenergic receptors",
pages = "127-123",
volume = "148",
doi = "10.1016/j.freeradbiomed.2020.01.001"
}
Korać Jačić, J., Nikolić, L. M., Stanković, D. M., Opačić, M., Dimitrijević, M., Savić, D. Z., Grguric-Sipka, S., Spasojević, I.,& Bogdanović Pristov, J.. (2020). Ferrous iron binding to epinephrine promotes the oxidation of iron and impedes activation of adrenergic receptors. in Free Radical Biology and Medicine
Elsevier Science Inc, New York., 148, 123-127.
https://doi.org/10.1016/j.freeradbiomed.2020.01.001
Korać Jačić J, Nikolić LM, Stanković DM, Opačić M, Dimitrijević M, Savić DZ, Grguric-Sipka S, Spasojević I, Bogdanović Pristov J. Ferrous iron binding to epinephrine promotes the oxidation of iron and impedes activation of adrenergic receptors. in Free Radical Biology and Medicine. 2020;148:123-127.
doi:10.1016/j.freeradbiomed.2020.01.001 .
Korać Jačić, Jelena, Nikolić, Ljiljana M., Stanković, Dalibor M., Opačić, Miloš, Dimitrijević, Milena, Savić, Danijela Z, Grguric-Sipka, Sanja, Spasojević, Ivan, Bogdanović Pristov, Jelena, "Ferrous iron binding to epinephrine promotes the oxidation of iron and impedes activation of adrenergic receptors" in Free Radical Biology and Medicine, 148 (2020):123-127,
https://doi.org/10.1016/j.freeradbiomed.2020.01.001 . .
1
1

Biliverdin-copper complex at physiological pH

Dimitrijević, Milena; Bogdanović Pristov, Jelena; Žižić, Milan; Stanković, Dalibor M.; Bajuk-Bogdanović, Danica; Stanić, Marina; Spasic, Snežana; Hagen, Wilfred; Spasojević, Ivan

(Royal Soc Chemistry, Cambridge, 2019)

TY  - JOUR
AU  - Dimitrijević, Milena
AU  - Bogdanović Pristov, Jelena
AU  - Žižić, Milan
AU  - Stanković, Dalibor M.
AU  - Bajuk-Bogdanović, Danica
AU  - Stanić, Marina
AU  - Spasic, Snežana
AU  - Hagen, Wilfred
AU  - Spasojević, Ivan
PY  - 2019
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1246
AB  - Biliverdin (BV), a product of heme catabolism, is known to interact with transition metals, but the details of such interactions under physiological conditions are scarce. Herein, we examined coordinate/redox interactions of BV with Cu2+ in phosphate buffer at pH 7.4, using spectrophotometry, HESI-MS, Raman spectroscopy, H-1 NMR, EPR, fluorimetry, and electrochemical methods. BV formed a stable coordination complex with copper in 1:1 stoichiometry. The structure of BV was more planar and energetically stable in the complex. The complex showed strong paramagnetic effects that were attributed to an unpaired delocalized e(-). The delocalized electron may come from BV or Cu2+, so the complex is formally composed either of BV radical cation and Cu1+ or of BV radical anion and Cu3+. The complex underwent oxidation only in the presence of both O-2 and an excess of Cu2+, or a strong oxidizing agent, and it was resistant to reducing agents. The biological effects of the stable BV metallocomplex containing a delocalized unpaired electron should be further examined, and may provide an answer to the long-standing question of high energy investment in the catabolism of BV, which represents a relatively harmless molecule per se.
PB  - Royal Soc Chemistry, Cambridge
T2  - Dalton Transactions
T1  - Biliverdin-copper complex at physiological pH
EP  - 6070
IS  - 18
SP  - 6061
VL  - 48
DO  - 10.1039/c8dt04724c
ER  - 
@article{
author = "Dimitrijević, Milena and Bogdanović Pristov, Jelena and Žižić, Milan and Stanković, Dalibor M. and Bajuk-Bogdanović, Danica and Stanić, Marina and Spasic, Snežana and Hagen, Wilfred and Spasojević, Ivan",
year = "2019",
abstract = "Biliverdin (BV), a product of heme catabolism, is known to interact with transition metals, but the details of such interactions under physiological conditions are scarce. Herein, we examined coordinate/redox interactions of BV with Cu2+ in phosphate buffer at pH 7.4, using spectrophotometry, HESI-MS, Raman spectroscopy, H-1 NMR, EPR, fluorimetry, and electrochemical methods. BV formed a stable coordination complex with copper in 1:1 stoichiometry. The structure of BV was more planar and energetically stable in the complex. The complex showed strong paramagnetic effects that were attributed to an unpaired delocalized e(-). The delocalized electron may come from BV or Cu2+, so the complex is formally composed either of BV radical cation and Cu1+ or of BV radical anion and Cu3+. The complex underwent oxidation only in the presence of both O-2 and an excess of Cu2+, or a strong oxidizing agent, and it was resistant to reducing agents. The biological effects of the stable BV metallocomplex containing a delocalized unpaired electron should be further examined, and may provide an answer to the long-standing question of high energy investment in the catabolism of BV, which represents a relatively harmless molecule per se.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "Dalton Transactions",
title = "Biliverdin-copper complex at physiological pH",
pages = "6070-6061",
number = "18",
volume = "48",
doi = "10.1039/c8dt04724c"
}
Dimitrijević, M., Bogdanović Pristov, J., Žižić, M., Stanković, D. M., Bajuk-Bogdanović, D., Stanić, M., Spasic, S., Hagen, W.,& Spasojević, I.. (2019). Biliverdin-copper complex at physiological pH. in Dalton Transactions
Royal Soc Chemistry, Cambridge., 48(18), 6061-6070.
https://doi.org/10.1039/c8dt04724c
Dimitrijević M, Bogdanović Pristov J, Žižić M, Stanković DM, Bajuk-Bogdanović D, Stanić M, Spasic S, Hagen W, Spasojević I. Biliverdin-copper complex at physiological pH. in Dalton Transactions. 2019;48(18):6061-6070.
doi:10.1039/c8dt04724c .
Dimitrijević, Milena, Bogdanović Pristov, Jelena, Žižić, Milan, Stanković, Dalibor M., Bajuk-Bogdanović, Danica, Stanić, Marina, Spasic, Snežana, Hagen, Wilfred, Spasojević, Ivan, "Biliverdin-copper complex at physiological pH" in Dalton Transactions, 48, no. 18 (2019):6061-6070,
https://doi.org/10.1039/c8dt04724c . .
10
6
9

Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH

Korać Jačić, Jelena; Stanković, Dalibor M.; Stanić, Marina; Bajuk-Bogdanović, Danica; Žižić, Milan; Bogdanović Pristov, Jelena; Grguric-Sipka, Sanja; Popovic-Bijelic, Ana; Spasojević, Ivan

(Nature Publishing Group, London, 2018)

TY  - JOUR
AU  - Korać Jačić, Jelena
AU  - Stanković, Dalibor M.
AU  - Stanić, Marina
AU  - Bajuk-Bogdanović, Danica
AU  - Žižić, Milan
AU  - Bogdanović Pristov, Jelena
AU  - Grguric-Sipka, Sanja
AU  - Popovic-Bijelic, Ana
AU  - Spasojević, Ivan
PY  - 2018
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1138
AB  - Coordinate and redox interactions of epinephrine (Epi) with iron at physiological pH are essential for understanding two very different phenomena - the detrimental effects of chronic stress on the cardiovascular system and the cross-linking of catecholamine-rich biopolymers and frameworks. Here we show that Epi and Fe3+ form stable high-spin complexes in the 1:1 or 3:1 stoichiometry, depending on the Epi/Fe3+ concentration ratio (low or high). Oxygen atoms on the catechol ring represent the sites of coordinate bond formation within physiologically relevant bidentate 1:1 complex. Redox properties of Epi are slightly impacted by Fe3+. On the other hand, Epi and Fe2+ form a complex that acts as a strong reducing agent, which leads to the production of hydrogen peroxide via O-2 reduction, and to a facilitated formation of the Epi-Fe3+ complexes. Epi is not oxidized in this process, i.e. Fe2+ is not an electron shuttle, but the electron donor. Epi-catalyzed oxidation of Fe2+ represents a plausible chemical basis of stress-related damage to heart cells. In addition, our results support the previous findings on the interactions of catecholamine moieties in polymers with iron and provide a novel strategy for improving the efficiency of cross-linking.
PB  - Nature Publishing Group, London
T2  - Scientific Reports
T1  - Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH
VL  - 8
DO  - 10.1038/s41598-018-21940-7
ER  - 
@article{
author = "Korać Jačić, Jelena and Stanković, Dalibor M. and Stanić, Marina and Bajuk-Bogdanović, Danica and Žižić, Milan and Bogdanović Pristov, Jelena and Grguric-Sipka, Sanja and Popovic-Bijelic, Ana and Spasojević, Ivan",
year = "2018",
abstract = "Coordinate and redox interactions of epinephrine (Epi) with iron at physiological pH are essential for understanding two very different phenomena - the detrimental effects of chronic stress on the cardiovascular system and the cross-linking of catecholamine-rich biopolymers and frameworks. Here we show that Epi and Fe3+ form stable high-spin complexes in the 1:1 or 3:1 stoichiometry, depending on the Epi/Fe3+ concentration ratio (low or high). Oxygen atoms on the catechol ring represent the sites of coordinate bond formation within physiologically relevant bidentate 1:1 complex. Redox properties of Epi are slightly impacted by Fe3+. On the other hand, Epi and Fe2+ form a complex that acts as a strong reducing agent, which leads to the production of hydrogen peroxide via O-2 reduction, and to a facilitated formation of the Epi-Fe3+ complexes. Epi is not oxidized in this process, i.e. Fe2+ is not an electron shuttle, but the electron donor. Epi-catalyzed oxidation of Fe2+ represents a plausible chemical basis of stress-related damage to heart cells. In addition, our results support the previous findings on the interactions of catecholamine moieties in polymers with iron and provide a novel strategy for improving the efficiency of cross-linking.",
publisher = "Nature Publishing Group, London",
journal = "Scientific Reports",
title = "Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH",
volume = "8",
doi = "10.1038/s41598-018-21940-7"
}
Korać Jačić, J., Stanković, D. M., Stanić, M., Bajuk-Bogdanović, D., Žižić, M., Bogdanović Pristov, J., Grguric-Sipka, S., Popovic-Bijelic, A.,& Spasojević, I.. (2018). Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH. in Scientific Reports
Nature Publishing Group, London., 8.
https://doi.org/10.1038/s41598-018-21940-7
Korać Jačić J, Stanković DM, Stanić M, Bajuk-Bogdanović D, Žižić M, Bogdanović Pristov J, Grguric-Sipka S, Popovic-Bijelic A, Spasojević I. Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH. in Scientific Reports. 2018;8.
doi:10.1038/s41598-018-21940-7 .
Korać Jačić, Jelena, Stanković, Dalibor M., Stanić, Marina, Bajuk-Bogdanović, Danica, Žižić, Milan, Bogdanović Pristov, Jelena, Grguric-Sipka, Sanja, Popovic-Bijelic, Ana, Spasojević, Ivan, "Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH" in Scientific Reports, 8 (2018),
https://doi.org/10.1038/s41598-018-21940-7 . .
1
14
7
12

Coordination and redox interactions of beta-lactam antibiotics with Cu2+ in physiological settings and the impact on antibacterial activity

Bozic, Bojana; Korać Jačić, Jelena; Stanković, Dalibor M.; Stanić, Marina; Romanović, Mima; Bogdanović Pristov, Jelena; Spasic, Snežana; Popovic-Bijelic, Ana; Spasojević, Ivan; Bajčetić, Milica

(Elsevier Science Inc, New York, 2018)

TY  - JOUR
AU  - Bozic, Bojana
AU  - Korać Jačić, Jelena
AU  - Stanković, Dalibor M.
AU  - Stanić, Marina
AU  - Romanović, Mima
AU  - Bogdanović Pristov, Jelena
AU  - Spasic, Snežana
AU  - Popovic-Bijelic, Ana
AU  - Spasojević, Ivan
AU  - Bajčetić, Milica
PY  - 2018
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1111
AB  - An increase in the copper pool in body fluids has been related to a number of pathological conditions, including infections. Copper ions may affect antibiotics via the formation of coordination bonds and/or redox reactions. Herein, we analyzed the interactions of Cu2+ with eight beta-lactam antibiotics using UV-Vis spectrophotometry, EPR spectroscopy, and electrochemical methods. Penicillin G did not show any detectable interactions with Cu2+. Ampicillin, amoxicillin and cephalexin formed stable colored complexes with octahedral coordination environment of Cu2+ with tetragonal distortion, and primary amine group as the site of coordinate bond formation. These beta-lactams increased the solubility of Cu2+ in the phosphate buffer. Ceftazidime and Cu2+ formed a complex with a similar geometry and gave rise to an organic radical. Ceftriaxone-Cu2+ complex appears to exhibit different geometry. All complexes showed 1: 1 stoichiometry. Cefaclor reduced Cu2+ to Cu1+ that further reacted with molecular oxygen to produce hydrogen peroxide. Finally, meropenem underwent degradation in the presence of copper. The analysis of activity against Escherichia coli and Staphylococcus aureus showed that the effects of meropenem, amoxicillin, ampicillin, and ceftriaxone were significantly hindered in the presence of copper ions. The interactions with copper ions should be taken into account regarding the problem of antibiotic resistance and in the selection of the most efficient antimicrobial therapy for patients with altered copper homeostasis.
PB  - Elsevier Science Inc, New York
T2  - Free Radical Biology and Medicine
T1  - Coordination and redox interactions of beta-lactam antibiotics with Cu2+ in physiological settings and the impact on antibacterial activity
EP  - 285
SP  - 279
VL  - 129
DO  - 10.1016/j.freeradbiomed.2018.09.038
ER  - 
@article{
author = "Bozic, Bojana and Korać Jačić, Jelena and Stanković, Dalibor M. and Stanić, Marina and Romanović, Mima and Bogdanović Pristov, Jelena and Spasic, Snežana and Popovic-Bijelic, Ana and Spasojević, Ivan and Bajčetić, Milica",
year = "2018",
abstract = "An increase in the copper pool in body fluids has been related to a number of pathological conditions, including infections. Copper ions may affect antibiotics via the formation of coordination bonds and/or redox reactions. Herein, we analyzed the interactions of Cu2+ with eight beta-lactam antibiotics using UV-Vis spectrophotometry, EPR spectroscopy, and electrochemical methods. Penicillin G did not show any detectable interactions with Cu2+. Ampicillin, amoxicillin and cephalexin formed stable colored complexes with octahedral coordination environment of Cu2+ with tetragonal distortion, and primary amine group as the site of coordinate bond formation. These beta-lactams increased the solubility of Cu2+ in the phosphate buffer. Ceftazidime and Cu2+ formed a complex with a similar geometry and gave rise to an organic radical. Ceftriaxone-Cu2+ complex appears to exhibit different geometry. All complexes showed 1: 1 stoichiometry. Cefaclor reduced Cu2+ to Cu1+ that further reacted with molecular oxygen to produce hydrogen peroxide. Finally, meropenem underwent degradation in the presence of copper. The analysis of activity against Escherichia coli and Staphylococcus aureus showed that the effects of meropenem, amoxicillin, ampicillin, and ceftriaxone were significantly hindered in the presence of copper ions. The interactions with copper ions should be taken into account regarding the problem of antibiotic resistance and in the selection of the most efficient antimicrobial therapy for patients with altered copper homeostasis.",
publisher = "Elsevier Science Inc, New York",
journal = "Free Radical Biology and Medicine",
title = "Coordination and redox interactions of beta-lactam antibiotics with Cu2+ in physiological settings and the impact on antibacterial activity",
pages = "285-279",
volume = "129",
doi = "10.1016/j.freeradbiomed.2018.09.038"
}
Bozic, B., Korać Jačić, J., Stanković, D. M., Stanić, M., Romanović, M., Bogdanović Pristov, J., Spasic, S., Popovic-Bijelic, A., Spasojević, I.,& Bajčetić, M.. (2018). Coordination and redox interactions of beta-lactam antibiotics with Cu2+ in physiological settings and the impact on antibacterial activity. in Free Radical Biology and Medicine
Elsevier Science Inc, New York., 129, 279-285.
https://doi.org/10.1016/j.freeradbiomed.2018.09.038
Bozic B, Korać Jačić J, Stanković DM, Stanić M, Romanović M, Bogdanović Pristov J, Spasic S, Popovic-Bijelic A, Spasojević I, Bajčetić M. Coordination and redox interactions of beta-lactam antibiotics with Cu2+ in physiological settings and the impact on antibacterial activity. in Free Radical Biology and Medicine. 2018;129:279-285.
doi:10.1016/j.freeradbiomed.2018.09.038 .
Bozic, Bojana, Korać Jačić, Jelena, Stanković, Dalibor M., Stanić, Marina, Romanović, Mima, Bogdanović Pristov, Jelena, Spasic, Snežana, Popovic-Bijelic, Ana, Spasojević, Ivan, Bajčetić, Milica, "Coordination and redox interactions of beta-lactam antibiotics with Cu2+ in physiological settings and the impact on antibacterial activity" in Free Radical Biology and Medicine, 129 (2018):279-285,
https://doi.org/10.1016/j.freeradbiomed.2018.09.038 . .
1
12
4
13

Multielement analysis and antioxidant capacity of Merlot wine clones developed in Montenegro

Đorđević, Neda O.; Pejin, Boris; Novaković, Miroslav M.; Stanković, Dalibor M.; Mutic, Jelena J.; Pajović, Snežana B.; Tešević, Vele

(Taylor & Francis Ltd, Abingdon, 2018)

TY  - JOUR
AU  - Đorđević, Neda O.
AU  - Pejin, Boris
AU  - Novaković, Miroslav M.
AU  - Stanković, Dalibor M.
AU  - Mutic, Jelena J.
AU  - Pajović, Snežana B.
AU  - Tešević, Vele
PY  - 2018
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1142
AB  - The overall aim of this paper was to compare the multielement composition and antioxidant capacity of two Montenegrin Merlot wines obtained from specific vine clones (VCR1 and VCR 101) along with commercial Merlot wine throughout the consecutive vintages in 2010 and 2011. Elemental composition was analysed using inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS). Additionally, antioxidant capacity was assessed by cyclic voltammetry. VCR 1 wine from 2011 stood out for its elemental composition. On the other hand, antioxidant capacity of VCR 101 wines was the highest one for the both vintages. According to the experimental data obtained, all three wines are good source of essential elements and products with a significant antioxidant activity and specific geographical origin.
PB  - Taylor & Francis Ltd, Abingdon
T2  - Natural Product Research
T1  - Multielement analysis and antioxidant capacity of Merlot wine clones developed in Montenegro
EP  - 251
IS  - 3
SP  - 247
VL  - 32
DO  - 10.1080/14786419.2017.1347171
ER  - 
@article{
author = "Đorđević, Neda O. and Pejin, Boris and Novaković, Miroslav M. and Stanković, Dalibor M. and Mutic, Jelena J. and Pajović, Snežana B. and Tešević, Vele",
year = "2018",
abstract = "The overall aim of this paper was to compare the multielement composition and antioxidant capacity of two Montenegrin Merlot wines obtained from specific vine clones (VCR1 and VCR 101) along with commercial Merlot wine throughout the consecutive vintages in 2010 and 2011. Elemental composition was analysed using inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS). Additionally, antioxidant capacity was assessed by cyclic voltammetry. VCR 1 wine from 2011 stood out for its elemental composition. On the other hand, antioxidant capacity of VCR 101 wines was the highest one for the both vintages. According to the experimental data obtained, all three wines are good source of essential elements and products with a significant antioxidant activity and specific geographical origin.",
publisher = "Taylor & Francis Ltd, Abingdon",
journal = "Natural Product Research",
title = "Multielement analysis and antioxidant capacity of Merlot wine clones developed in Montenegro",
pages = "251-247",
number = "3",
volume = "32",
doi = "10.1080/14786419.2017.1347171"
}
Đorđević, N. O., Pejin, B., Novaković, M. M., Stanković, D. M., Mutic, J. J., Pajović, S. B.,& Tešević, V.. (2018). Multielement analysis and antioxidant capacity of Merlot wine clones developed in Montenegro. in Natural Product Research
Taylor & Francis Ltd, Abingdon., 32(3), 247-251.
https://doi.org/10.1080/14786419.2017.1347171
Đorđević NO, Pejin B, Novaković MM, Stanković DM, Mutic JJ, Pajović SB, Tešević V. Multielement analysis and antioxidant capacity of Merlot wine clones developed in Montenegro. in Natural Product Research. 2018;32(3):247-251.
doi:10.1080/14786419.2017.1347171 .
Đorđević, Neda O., Pejin, Boris, Novaković, Miroslav M., Stanković, Dalibor M., Mutic, Jelena J., Pajović, Snežana B., Tešević, Vele, "Multielement analysis and antioxidant capacity of Merlot wine clones developed in Montenegro" in Natural Product Research, 32, no. 3 (2018):247-251,
https://doi.org/10.1080/14786419.2017.1347171 . .
6
6
6

Mechanisms of redox interactions of bilirubin with copper and the effects of penicillamine

Bozic, Bojana; Korać Jačić, Jelena; Stanković, Dalibor M.; Stanić, Marina; Popovic-Bijelic, Ana; Bogdanović Pristov, Jelena; Spasojević, Ivan; Bajčetić, Milica

(Elsevier Ireland Ltd, Clare, 2017)

TY  - JOUR
AU  - Bozic, Bojana
AU  - Korać Jačić, Jelena
AU  - Stanković, Dalibor M.
AU  - Stanić, Marina
AU  - Popovic-Bijelic, Ana
AU  - Bogdanović Pristov, Jelena
AU  - Spasojević, Ivan
AU  - Bajčetić, Milica
PY  - 2017
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1044
AB  - Toxic effects of unconjugated bilirubin (BR) in neonatal hyperbilirubinemia have been related to redox and/or coordinate interactions with Cu2+. However, the development and mechanisms of such interactions at physiological pH have not been resolved. This study shows that BR reduces Cu2+ to Cu1+ in 1:1 stoichiometry. Apparently, BR undergoes degradation, i.e. BR and Cu2+ do not form stable complexes. The binding of Cu2+ to inorganic phosphates, liposomal phosphate groups, or to chelating drug penicillamine, impedes redox interactions with BR. Cu1+ undergoes spontaneous oxidation by O-2 resulting in hydrogen peroxide accumulation and hydroxyl radical production. In relation to this, copper and BR induced synergistic oxidative/damaging effects on erythrocytes membrane, which were alleviated by penicillamine. The production of reactive oxygen species by BR and copper represents a plausible cause of BR toxic effects and cell damage in hyperbilirubinemia. Further examination of therapeutic potentials of copper chelators in the treatment of severe neonatal hyperbilirubinemia is needed.
PB  - Elsevier Ireland Ltd, Clare
T2  - Chemico-Biological Interactions
T1  - Mechanisms of redox interactions of bilirubin with copper and the effects of penicillamine
EP  - 134
SP  - 129
VL  - 278
DO  - 10.1016/j.cbi.2017.10.022
ER  - 
@article{
author = "Bozic, Bojana and Korać Jačić, Jelena and Stanković, Dalibor M. and Stanić, Marina and Popovic-Bijelic, Ana and Bogdanović Pristov, Jelena and Spasojević, Ivan and Bajčetić, Milica",
year = "2017",
abstract = "Toxic effects of unconjugated bilirubin (BR) in neonatal hyperbilirubinemia have been related to redox and/or coordinate interactions with Cu2+. However, the development and mechanisms of such interactions at physiological pH have not been resolved. This study shows that BR reduces Cu2+ to Cu1+ in 1:1 stoichiometry. Apparently, BR undergoes degradation, i.e. BR and Cu2+ do not form stable complexes. The binding of Cu2+ to inorganic phosphates, liposomal phosphate groups, or to chelating drug penicillamine, impedes redox interactions with BR. Cu1+ undergoes spontaneous oxidation by O-2 resulting in hydrogen peroxide accumulation and hydroxyl radical production. In relation to this, copper and BR induced synergistic oxidative/damaging effects on erythrocytes membrane, which were alleviated by penicillamine. The production of reactive oxygen species by BR and copper represents a plausible cause of BR toxic effects and cell damage in hyperbilirubinemia. Further examination of therapeutic potentials of copper chelators in the treatment of severe neonatal hyperbilirubinemia is needed.",
publisher = "Elsevier Ireland Ltd, Clare",
journal = "Chemico-Biological Interactions",
title = "Mechanisms of redox interactions of bilirubin with copper and the effects of penicillamine",
pages = "134-129",
volume = "278",
doi = "10.1016/j.cbi.2017.10.022"
}
Bozic, B., Korać Jačić, J., Stanković, D. M., Stanić, M., Popovic-Bijelic, A., Bogdanović Pristov, J., Spasojević, I.,& Bajčetić, M.. (2017). Mechanisms of redox interactions of bilirubin with copper and the effects of penicillamine. in Chemico-Biological Interactions
Elsevier Ireland Ltd, Clare., 278, 129-134.
https://doi.org/10.1016/j.cbi.2017.10.022
Bozic B, Korać Jačić J, Stanković DM, Stanić M, Popovic-Bijelic A, Bogdanović Pristov J, Spasojević I, Bajčetić M. Mechanisms of redox interactions of bilirubin with copper and the effects of penicillamine. in Chemico-Biological Interactions. 2017;278:129-134.
doi:10.1016/j.cbi.2017.10.022 .
Bozic, Bojana, Korać Jačić, Jelena, Stanković, Dalibor M., Stanić, Marina, Popovic-Bijelic, Ana, Bogdanović Pristov, Jelena, Spasojević, Ivan, Bajčetić, Milica, "Mechanisms of redox interactions of bilirubin with copper and the effects of penicillamine" in Chemico-Biological Interactions, 278 (2017):129-134,
https://doi.org/10.1016/j.cbi.2017.10.022 . .
4
2
5

Some chemical characteristics and antioxidant capacity of novel Merlot wine clones developed in Montenegro

Đorđević, Neda O.; Pejin, Boris; Novaković, Miroslav M.; Stanković, Dalibor M.; Mutic, Jelena J.; Pajović, Snežana B.; Tešević, Vele

(Elsevier Science Bv, Amsterdam, 2017)

TY  - JOUR
AU  - Đorđević, Neda O.
AU  - Pejin, Boris
AU  - Novaković, Miroslav M.
AU  - Stanković, Dalibor M.
AU  - Mutic, Jelena J.
AU  - Pajović, Snežana B.
AU  - Tešević, Vele
PY  - 2017
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1069
AB  - The overall aim was to compare the quality of two Montenegrin Merlot wines obtained from new vine clones (VCR1 and VCR 101) along with commercial Merlot wine throughout the consecutive vintages in 2010 and 2011, due to preliminary screening of the potential of novel Merlot vine clones for the wine industry. The content of phenolic compounds was determined by liquid chromatography tandem mass spectrometry (LC-MS/MS). Elemental composition was analysed using inductively coupled plasma optical emission spectrometery (ICP-OES) and inductively coupled plasma mass spectrometery (ICP-MS)]. Additionaly, antioxidant capacity was assessed by cyclic voltammetry. Compared with the commercial one, both wine clones contained higher percent of major phenolic compounds (namely, gallic acid and catechin) with top values recorded for VCR1 both in 2010 (30.46 +/- 0.42 mg/1) and 2011 (28.12 +/- 0.29 mg/1). The same wines were enriched with epicatechin, resveratrol, myricetin and quercetin. Furthermore, VCR 1 wine from 2011 stood out for its elemental composition. On the other hand, antioxidant capacity of VCR 101 wines was the highest one for the both vintages. According to the experimental data obtained, both new Montenegrin Merlot wines represent good candidates for the commercialised wines with an indication of geographical origin.
PB  - Elsevier Science Bv, Amsterdam
T2  - Scientia Horticulturae
T1  - Some chemical characteristics and antioxidant capacity of novel Merlot wine clones developed in Montenegro
EP  - 511
SP  - 505
VL  - 225
DO  - 10.1016/j.scienta.2017.07.045
ER  - 
@article{
author = "Đorđević, Neda O. and Pejin, Boris and Novaković, Miroslav M. and Stanković, Dalibor M. and Mutic, Jelena J. and Pajović, Snežana B. and Tešević, Vele",
year = "2017",
abstract = "The overall aim was to compare the quality of two Montenegrin Merlot wines obtained from new vine clones (VCR1 and VCR 101) along with commercial Merlot wine throughout the consecutive vintages in 2010 and 2011, due to preliminary screening of the potential of novel Merlot vine clones for the wine industry. The content of phenolic compounds was determined by liquid chromatography tandem mass spectrometry (LC-MS/MS). Elemental composition was analysed using inductively coupled plasma optical emission spectrometery (ICP-OES) and inductively coupled plasma mass spectrometery (ICP-MS)]. Additionaly, antioxidant capacity was assessed by cyclic voltammetry. Compared with the commercial one, both wine clones contained higher percent of major phenolic compounds (namely, gallic acid and catechin) with top values recorded for VCR1 both in 2010 (30.46 +/- 0.42 mg/1) and 2011 (28.12 +/- 0.29 mg/1). The same wines were enriched with epicatechin, resveratrol, myricetin and quercetin. Furthermore, VCR 1 wine from 2011 stood out for its elemental composition. On the other hand, antioxidant capacity of VCR 101 wines was the highest one for the both vintages. According to the experimental data obtained, both new Montenegrin Merlot wines represent good candidates for the commercialised wines with an indication of geographical origin.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Scientia Horticulturae",
title = "Some chemical characteristics and antioxidant capacity of novel Merlot wine clones developed in Montenegro",
pages = "511-505",
volume = "225",
doi = "10.1016/j.scienta.2017.07.045"
}
Đorđević, N. O., Pejin, B., Novaković, M. M., Stanković, D. M., Mutic, J. J., Pajović, S. B.,& Tešević, V.. (2017). Some chemical characteristics and antioxidant capacity of novel Merlot wine clones developed in Montenegro. in Scientia Horticulturae
Elsevier Science Bv, Amsterdam., 225, 505-511.
https://doi.org/10.1016/j.scienta.2017.07.045
Đorđević NO, Pejin B, Novaković MM, Stanković DM, Mutic JJ, Pajović SB, Tešević V. Some chemical characteristics and antioxidant capacity of novel Merlot wine clones developed in Montenegro. in Scientia Horticulturae. 2017;225:505-511.
doi:10.1016/j.scienta.2017.07.045 .
Đorđević, Neda O., Pejin, Boris, Novaković, Miroslav M., Stanković, Dalibor M., Mutic, Jelena J., Pajović, Snežana B., Tešević, Vele, "Some chemical characteristics and antioxidant capacity of novel Merlot wine clones developed in Montenegro" in Scientia Horticulturae, 225 (2017):505-511,
https://doi.org/10.1016/j.scienta.2017.07.045 . .
14
9
16