Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200053 (University of Belgrade, Institute for Multidisciplinary Research) (RS-200053)

Link to this page

Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200053 (University of Belgrade, Institute for Multidisciplinary Research) (RS-200053)

Authors

Publications

The catalytic degradation of RO16 dye under dark ambient conditions using La-Ni-Nb-O-based powders

Počuča-Nešić, Milica; Vukašinović, Jelena; Dapčević, Aleksandra; Ribić, Vesna; Branković, Zorica; Vojisavljević, Katarina; Marinković Stanojević, Zorica; Branković, Goran

(University of Belgrade, Institute for Multidisciplinary Research, 2022)

TY  - CONF
AU  - Počuča-Nešić, Milica
AU  - Vukašinović, Jelena
AU  - Dapčević, Aleksandra
AU  - Ribić, Vesna
AU  - Branković, Zorica
AU  - Vojisavljević, Katarina
AU  - Marinković Stanojević, Zorica
AU  - Branković, Goran
PY  - 2022
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2031
AB  - Dyes released from textile industries present a big threat to the environment, and
remediation of wastewaters became one of the major scientific challenges. In recent
years, there has been a great need for catalysts that would oxidize pollutants under
dark ambient conditions without the use of external stimulants like light,
temperature, or additional chemicals such as O3, H2O2. Efficient work of these
catalysts would significantly reduce the energy consumption. Among other
materials, perovskite-type oxides with general formula ABO3 emerged as possible
catalysts for dye degradation in the dark conditions. Lanthanum nickelates with
single (LaNiO3) and layered perovskite structure (La4Ni3O10, La3Ni2O7, La2NiO4)
showed good catalytic properties, due to the existence of nickel in two oxidation
states (Ni2+ and Ni3+) and the oxygen non-stoichiometry in these materials [1].
This study presents structural, microstructural and catalytic properties of the
LaNi1-xNbxO3-based (xNb = 0.000, 0,005 and 0,010; La-Ni-Nb-O) powders prepared
by mechanical activation method. The XRD (X-Ray Diffraction) analysis revealed
the existence of a multiphase oxide system, including layered structures of
nickelates Lan+1NinO3n+1 (n = 3, 2, 1, 0) and NiO phase in all La-Ni-Nb-O-based
powders. Also, the HRTEM (High Resolution Transmission Electron Microscopy)
analysis confirmed the presence of structural polytypes in these powders. The
catalytic properties of La-Ni-Nb-O-based powders were investigated by degradation
of the anionic azo dye, Reactive Orange 16 (RO16), under dark ambient conditions
at different pH values (3, 6.5, 9.5 and 11) and temperature of 20 °C. The best
catalytic efficiency in the degradation of RO16 dye showed the sample with x(Nb) =
0.010 in acidic solution, where the residual of RO16 dye was about 4.5 % after 330
minutes. The reusability test for this powder in degradation process of RO16 dye
showed that the sample with x(Nb) = 0.010 retained its catalytic activity during three
cycles.
1. W. Zhong et al., Appl. Catal. A, Gen., 549 (2018) 302.
PB  - University of Belgrade, Institute for Multidisciplinary Research
C3  - 6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia
T1  - The catalytic degradation of RO16 dye under dark ambient conditions using La-Ni-Nb-O-based powders
SP  - 63
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2031
ER  - 
@conference{
author = "Počuča-Nešić, Milica and Vukašinović, Jelena and Dapčević, Aleksandra and Ribić, Vesna and Branković, Zorica and Vojisavljević, Katarina and Marinković Stanojević, Zorica and Branković, Goran",
year = "2022",
abstract = "Dyes released from textile industries present a big threat to the environment, and
remediation of wastewaters became one of the major scientific challenges. In recent
years, there has been a great need for catalysts that would oxidize pollutants under
dark ambient conditions without the use of external stimulants like light,
temperature, or additional chemicals such as O3, H2O2. Efficient work of these
catalysts would significantly reduce the energy consumption. Among other
materials, perovskite-type oxides with general formula ABO3 emerged as possible
catalysts for dye degradation in the dark conditions. Lanthanum nickelates with
single (LaNiO3) and layered perovskite structure (La4Ni3O10, La3Ni2O7, La2NiO4)
showed good catalytic properties, due to the existence of nickel in two oxidation
states (Ni2+ and Ni3+) and the oxygen non-stoichiometry in these materials [1].
This study presents structural, microstructural and catalytic properties of the
LaNi1-xNbxO3-based (xNb = 0.000, 0,005 and 0,010; La-Ni-Nb-O) powders prepared
by mechanical activation method. The XRD (X-Ray Diffraction) analysis revealed
the existence of a multiphase oxide system, including layered structures of
nickelates Lan+1NinO3n+1 (n = 3, 2, 1, 0) and NiO phase in all La-Ni-Nb-O-based
powders. Also, the HRTEM (High Resolution Transmission Electron Microscopy)
analysis confirmed the presence of structural polytypes in these powders. The
catalytic properties of La-Ni-Nb-O-based powders were investigated by degradation
of the anionic azo dye, Reactive Orange 16 (RO16), under dark ambient conditions
at different pH values (3, 6.5, 9.5 and 11) and temperature of 20 °C. The best
catalytic efficiency in the degradation of RO16 dye showed the sample with x(Nb) =
0.010 in acidic solution, where the residual of RO16 dye was about 4.5 % after 330
minutes. The reusability test for this powder in degradation process of RO16 dye
showed that the sample with x(Nb) = 0.010 retained its catalytic activity during three
cycles.
1. W. Zhong et al., Appl. Catal. A, Gen., 549 (2018) 302.",
publisher = "University of Belgrade, Institute for Multidisciplinary Research",
journal = "6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia",
title = "The catalytic degradation of RO16 dye under dark ambient conditions using La-Ni-Nb-O-based powders",
pages = "63",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2031"
}
Počuča-Nešić, M., Vukašinović, J., Dapčević, A., Ribić, V., Branković, Z., Vojisavljević, K., Marinković Stanojević, Z.,& Branković, G.. (2022). The catalytic degradation of RO16 dye under dark ambient conditions using La-Ni-Nb-O-based powders. in 6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia
University of Belgrade, Institute for Multidisciplinary Research., 63.
https://hdl.handle.net/21.15107/rcub_rimsi_2031
Počuča-Nešić M, Vukašinović J, Dapčević A, Ribić V, Branković Z, Vojisavljević K, Marinković Stanojević Z, Branković G. The catalytic degradation of RO16 dye under dark ambient conditions using La-Ni-Nb-O-based powders. in 6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia. 2022;:63.
https://hdl.handle.net/21.15107/rcub_rimsi_2031 .
Počuča-Nešić, Milica, Vukašinović, Jelena, Dapčević, Aleksandra, Ribić, Vesna, Branković, Zorica, Vojisavljević, Katarina, Marinković Stanojević, Zorica, Branković, Goran, "The catalytic degradation of RO16 dye under dark ambient conditions using La-Ni-Nb-O-based powders" in 6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia (2022):63,
https://hdl.handle.net/21.15107/rcub_rimsi_2031 .

Hierarchical ZnO/SnO2 heterostructures via hydrothermally assisted electrospinning technique: synthesis and photocatalytic performances

Vojisavljević, Katarina; Vukašinović, Jelena; Počuča-Nešić, Milica; Savic, Slavica; Podlogar, Matejka; Zemljak, Olivera; Branković, Zorica

(University of Belgrade, Institute for Multidisciplinary Research, 2022)

TY  - CONF
AU  - Vojisavljević, Katarina
AU  - Vukašinović, Jelena
AU  - Počuča-Nešić, Milica
AU  - Savic, Slavica
AU  - Podlogar, Matejka
AU  - Zemljak, Olivera
AU  - Branković, Zorica
PY  - 2022
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2038
AB  - Hierarchical nanostructures with multiporous tin oxide nanofibers (SnO2-
MPNFs) and zinc oxide nanorods (ZnO-NRs) have been synthesized by combining
electrospinning technique and hydrothermal method. A solution containing
uniformly distributed tin (Sn) and silicon (Si) species of precursors, as well as a
sacrificial polymer (PVP) was electrospun using a single-nozzle spinneret to
fabricate nanofibers. In virtue of the Kirkendall effect driven by calcination at
550 °C, the SiO2-cored SnO2 nanofibers (SnO2-SiO2-NFs) deliberated from PVP
were formed and used as backbones for further hydrothermal growth of ZnO-NRs.
By varying the hydrothermal reaction time (0.5–2 h) at the constant concentration of
SnO2-SiO2-NFs, zinc (Zn) precursor, directing agent (hexamethylenetetramine,
HMT) and aqueous ammonia, the density, length and thickness of ZnO-NRs were
controlled. Nanofibers and ZnO-NRs/SnO2-MPNFs heterostructures are confirmed
by X-ray diffraction (XRD), field-emission scanning electron microcopy (FE-SEM),
energy dispersive spectrometer (EDS), transmission electron microscopy (TEM) and
elemental mapping analysis. 
The hydrothermal treatment conducted at 90 °C in aqueous ammonia allowed:
a) selective etching of SiO2 from the SnO2-SiO2-NFs core and SiO2 trapped between
SnO2 particles, and b) effective growth of ZnO-NRs. The process resulted in
ZnO-NRs/SnO2-MPNFs heterostructures with ZnO-NRs of 1–5 μm in length
attached to SnO2-MPNFs, the shell of which was composed of ultra-fine SnO2
crystallites (~5 nm in size) and where the four porous channels create the core
instead of SiO2. Photocatalytic performance of the heterostructures was investigated
toward different organic azo-dyes (methylene blue, methyl orange) and obvious
enhancement was demonstrated in degradation of the organic pollutant, compared to
primary SnO2-based nanofibers.
PB  - University of Belgrade, Institute for Multidisciplinary Research
C3  - 6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia
T1  - Hierarchical ZnO/SnO2 heterostructures via hydrothermally assisted electrospinning technique: synthesis and photocatalytic performances
SP  - 51
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2038
ER  - 
@conference{
author = "Vojisavljević, Katarina and Vukašinović, Jelena and Počuča-Nešić, Milica and Savic, Slavica and Podlogar, Matejka and Zemljak, Olivera and Branković, Zorica",
year = "2022",
abstract = "Hierarchical nanostructures with multiporous tin oxide nanofibers (SnO2-
MPNFs) and zinc oxide nanorods (ZnO-NRs) have been synthesized by combining
electrospinning technique and hydrothermal method. A solution containing
uniformly distributed tin (Sn) and silicon (Si) species of precursors, as well as a
sacrificial polymer (PVP) was electrospun using a single-nozzle spinneret to
fabricate nanofibers. In virtue of the Kirkendall effect driven by calcination at
550 °C, the SiO2-cored SnO2 nanofibers (SnO2-SiO2-NFs) deliberated from PVP
were formed and used as backbones for further hydrothermal growth of ZnO-NRs.
By varying the hydrothermal reaction time (0.5–2 h) at the constant concentration of
SnO2-SiO2-NFs, zinc (Zn) precursor, directing agent (hexamethylenetetramine,
HMT) and aqueous ammonia, the density, length and thickness of ZnO-NRs were
controlled. Nanofibers and ZnO-NRs/SnO2-MPNFs heterostructures are confirmed
by X-ray diffraction (XRD), field-emission scanning electron microcopy (FE-SEM),
energy dispersive spectrometer (EDS), transmission electron microscopy (TEM) and
elemental mapping analysis. 
The hydrothermal treatment conducted at 90 °C in aqueous ammonia allowed:
a) selective etching of SiO2 from the SnO2-SiO2-NFs core and SiO2 trapped between
SnO2 particles, and b) effective growth of ZnO-NRs. The process resulted in
ZnO-NRs/SnO2-MPNFs heterostructures with ZnO-NRs of 1–5 μm in length
attached to SnO2-MPNFs, the shell of which was composed of ultra-fine SnO2
crystallites (~5 nm in size) and where the four porous channels create the core
instead of SiO2. Photocatalytic performance of the heterostructures was investigated
toward different organic azo-dyes (methylene blue, methyl orange) and obvious
enhancement was demonstrated in degradation of the organic pollutant, compared to
primary SnO2-based nanofibers.",
publisher = "University of Belgrade, Institute for Multidisciplinary Research",
journal = "6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia",
title = "Hierarchical ZnO/SnO2 heterostructures via hydrothermally assisted electrospinning technique: synthesis and photocatalytic performances",
pages = "51",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2038"
}
Vojisavljević, K., Vukašinović, J., Počuča-Nešić, M., Savic, S., Podlogar, M., Zemljak, O.,& Branković, Z.. (2022). Hierarchical ZnO/SnO2 heterostructures via hydrothermally assisted electrospinning technique: synthesis and photocatalytic performances. in 6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia
University of Belgrade, Institute for Multidisciplinary Research., 51.
https://hdl.handle.net/21.15107/rcub_rimsi_2038
Vojisavljević K, Vukašinović J, Počuča-Nešić M, Savic S, Podlogar M, Zemljak O, Branković Z. Hierarchical ZnO/SnO2 heterostructures via hydrothermally assisted electrospinning technique: synthesis and photocatalytic performances. in 6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia. 2022;:51.
https://hdl.handle.net/21.15107/rcub_rimsi_2038 .
Vojisavljević, Katarina, Vukašinović, Jelena, Počuča-Nešić, Milica, Savic, Slavica, Podlogar, Matejka, Zemljak, Olivera, Branković, Zorica, "Hierarchical ZnO/SnO2 heterostructures via hydrothermally assisted electrospinning technique: synthesis and photocatalytic performances" in 6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia (2022):51,
https://hdl.handle.net/21.15107/rcub_rimsi_2038 .

The defect structure and electrical properties of the spark plasma sintered antimony-doped barium stannate

Vukašinović, Jelena; Rapljenović, Željko; Počuča-Nešić, Milica; Ivek, Tomislav; Peter, Robert; Branković, Zorica; Zemljak, Olivera; Branković, Goran

(University of Belgrade, Institute for Multidisciplinary Research, 2022)

TY  - CONF
AU  - Vukašinović, Jelena
AU  - Rapljenović, Željko
AU  - Počuča-Nešić, Milica
AU  - Ivek, Tomislav
AU  - Peter, Robert
AU  - Branković, Zorica
AU  - Zemljak, Olivera
AU  - Branković, Goran
PY  - 2022
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2025
AB  - Barium stannate, BaSnO3 (BSO), is a perovskite-type alkaline earth metal
stannate with almost ideal cubic structure. Appropriate doping can alter this wide
band gap material’s electrical characteristics and change it either into a proton
conductor or n-type semiconductor. In the case of Sb doping on Sn site, BSO
becomes n-type semiconductor with high electrical conductivity at 25 °C.
The major drawback of BSO-based ceramics is its low density. The
conventional solid state procedure requires long thermal treatments with several
intermittent grinding and heating steps at temperatures up to 1600 °C [1].
To overcome this problem, we used Spark Plasma Sintering technique (SPS) for
the preparation of BaSn1-xSbxO3, (x = 0.00 (BSSO0) and 0.08 (BSSO8)) ceramic
samples. The samples structural properties were investigated using XRD (X-Ray
Powder Diffraction), XPS (X-Ray Photoelectron Spectrophotmetry) and SIMS
(Secondary Ion Mass Spectrometry) analyses. XPS analysis revealed the existence
of many structural defects, including mixed oxidation states of tin (Sn2+/Sn4+) and
oxygen vacancies (VO) in both BSSO samples.
The electrical properties of the BSSO ceramic samples were investigated in the
temperature range of 4–300 K. The presence of oxygen vacancies in the BSSO0
sample led to the absence of the standard activated semiconductor behavior,
showing almost linear temperature-dependent resistivity in the examined
temperature range. On the other hand, the BSSO8 sample showed almost temperature-independent resistivity in the range of 70–300 K. This could be a
consequence of the presence of many structural defects such as mixed oxidation
states of Sn2+/Sn4+, probably Sb3+/Sb5+ and significant amount of O- species, as well
as the presence of the low angle grain boundaries found in this sample. The BSSO8
ceramic sample could satisfy the huge demand for the linear resistors with moderate
and high conductivity, due to its low and almost constant electrical resistivity in the
wide temperature.
1. A.-M. Azad, L.L.W. Shyan, T.Y. Pang, C.H. Nee, Ceram. Int., 26 (2000) 685.
PB  - University of Belgrade, Institute for Multidisciplinary Research
C3  - 6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia
T1  - The defect structure and electrical properties of the spark plasma sintered antimony-doped barium stannate
EP  - 76
SP  - 75
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2025
ER  - 
@conference{
author = "Vukašinović, Jelena and Rapljenović, Željko and Počuča-Nešić, Milica and Ivek, Tomislav and Peter, Robert and Branković, Zorica and Zemljak, Olivera and Branković, Goran",
year = "2022",
abstract = "Barium stannate, BaSnO3 (BSO), is a perovskite-type alkaline earth metal
stannate with almost ideal cubic structure. Appropriate doping can alter this wide
band gap material’s electrical characteristics and change it either into a proton
conductor or n-type semiconductor. In the case of Sb doping on Sn site, BSO
becomes n-type semiconductor with high electrical conductivity at 25 °C.
The major drawback of BSO-based ceramics is its low density. The
conventional solid state procedure requires long thermal treatments with several
intermittent grinding and heating steps at temperatures up to 1600 °C [1].
To overcome this problem, we used Spark Plasma Sintering technique (SPS) for
the preparation of BaSn1-xSbxO3, (x = 0.00 (BSSO0) and 0.08 (BSSO8)) ceramic
samples. The samples structural properties were investigated using XRD (X-Ray
Powder Diffraction), XPS (X-Ray Photoelectron Spectrophotmetry) and SIMS
(Secondary Ion Mass Spectrometry) analyses. XPS analysis revealed the existence
of many structural defects, including mixed oxidation states of tin (Sn2+/Sn4+) and
oxygen vacancies (VO) in both BSSO samples.
The electrical properties of the BSSO ceramic samples were investigated in the
temperature range of 4–300 K. The presence of oxygen vacancies in the BSSO0
sample led to the absence of the standard activated semiconductor behavior,
showing almost linear temperature-dependent resistivity in the examined
temperature range. On the other hand, the BSSO8 sample showed almost temperature-independent resistivity in the range of 70–300 K. This could be a
consequence of the presence of many structural defects such as mixed oxidation
states of Sn2+/Sn4+, probably Sb3+/Sb5+ and significant amount of O- species, as well
as the presence of the low angle grain boundaries found in this sample. The BSSO8
ceramic sample could satisfy the huge demand for the linear resistors with moderate
and high conductivity, due to its low and almost constant electrical resistivity in the
wide temperature.
1. A.-M. Azad, L.L.W. Shyan, T.Y. Pang, C.H. Nee, Ceram. Int., 26 (2000) 685.",
publisher = "University of Belgrade, Institute for Multidisciplinary Research",
journal = "6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia",
title = "The defect structure and electrical properties of the spark plasma sintered antimony-doped barium stannate",
pages = "76-75",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2025"
}
Vukašinović, J., Rapljenović, Ž., Počuča-Nešić, M., Ivek, T., Peter, R., Branković, Z., Zemljak, O.,& Branković, G.. (2022). The defect structure and electrical properties of the spark plasma sintered antimony-doped barium stannate. in 6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia
University of Belgrade, Institute for Multidisciplinary Research., 75-76.
https://hdl.handle.net/21.15107/rcub_rimsi_2025
Vukašinović J, Rapljenović Ž, Počuča-Nešić M, Ivek T, Peter R, Branković Z, Zemljak O, Branković G. The defect structure and electrical properties of the spark plasma sintered antimony-doped barium stannate. in 6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia. 2022;:75-76.
https://hdl.handle.net/21.15107/rcub_rimsi_2025 .
Vukašinović, Jelena, Rapljenović, Željko, Počuča-Nešić, Milica, Ivek, Tomislav, Peter, Robert, Branković, Zorica, Zemljak, Olivera, Branković, Goran, "The defect structure and electrical properties of the spark plasma sintered antimony-doped barium stannate" in 6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia (2022):75-76,
https://hdl.handle.net/21.15107/rcub_rimsi_2025 .

Spark plasma sintering of conductive Sb-doped BaSnO3

Vukašinović, Jelena; Počuča-Nešić, Milica; Luković Golić, Danijela; Dapčević, Aleksandra; Kocen, Matej; Bernik, Slavko; Lazović, Vladimir; Branković, Zorica; Branković, Goran

(University of Belgrade, Institute for Multidisciplinary Research, 2019)

TY  - CONF
AU  - Vukašinović, Jelena
AU  - Počuča-Nešić, Milica
AU  - Luković Golić, Danijela
AU  - Dapčević, Aleksandra
AU  - Kocen, Matej
AU  - Bernik, Slavko
AU  - Lazović, Vladimir
AU  - Branković, Zorica
AU  - Branković, Goran
PY  - 2019
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2037
AB  - Barium stannate, BaSnO3, belongs to the group of perovskite-type alkaline earth
stannates. It is an electrical insulator, but doping with proper cation can change its’
electrical properties and transform it into an n-type semiconductor.
In this work, we present the Sb-doped barium stannate, BaSn1-xSbxO3, x = 0.00,
0.04, 0.06, 0.08 and 0.10 (labelled as BSSOx100), using BaCO3, SnO2 and Sb2O5
as starting materials. Mechanically activated precursors were calcined at 900 °C for
4 h and subsequently sintered by Spark Plasma Sintering (SPS) Technique. For the
characterization of obtained ceramic samples various techniques were used: X-ray
Diffraction (XRD) analysis, High Resolution Transmission and Field Emission
electron microscopy (HRTEM and FESEM) and UV-Vis spectroscopy. Electrical
conductivity of BaSn1-xSbxO3 ceramic samples was determined by measuring the
current-voltage (I–U) characteristics in different mediums (air, silicon oil) at room
temperature and temperatures up to 150 °C.
XRD analysis confirmed the formation of the cubic BaSnO3 perovskite phase as
a major, and tetragonal Ba2SnO4 as a secondary phase. The content of Ba2SnO4
phase decreased with introducing of Sb into the BaSnO3 lattice. FESEM
micrographs of fractured BaSn1-xSbxO3 ceramic samples showed well-densified
microstructure and decrease of grain size with the increment of x. HRTEM analyses
revealed the existence of low angle grain boundary (LAGB), which provides low
energy conduction path of electrons. The results obtained from UV-Vis
spectroscopy, indicated the decrease of band gap value of BaSn1-xSbxO3 samples
with increasing Sb concentration. Electrical characterization confirmed that Sbdoped
BaSnO3 exhibits n-type conductivity. BaSn1-xSbxO3 samples with x = 0.04,
0.06, 0.08 showed linear I–U characteristics at temperatures up to 150 ºC. The
highest electrical conductivity was 1.96 S/cm for the BaSn0.92Sb0.08O3. The increase
of Sb concentration to x = 0.10 led to the loss of I–U characteristics' linearity.
PB  - University of Belgrade, Institute for Multidisciplinary Research
C3  - 5th Conference of the Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade
T1  - Spark plasma sintering of conductive Sb-doped BaSnO3
SP  - 136
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2037
ER  - 
@conference{
author = "Vukašinović, Jelena and Počuča-Nešić, Milica and Luković Golić, Danijela and Dapčević, Aleksandra and Kocen, Matej and Bernik, Slavko and Lazović, Vladimir and Branković, Zorica and Branković, Goran",
year = "2019",
abstract = "Barium stannate, BaSnO3, belongs to the group of perovskite-type alkaline earth
stannates. It is an electrical insulator, but doping with proper cation can change its’
electrical properties and transform it into an n-type semiconductor.
In this work, we present the Sb-doped barium stannate, BaSn1-xSbxO3, x = 0.00,
0.04, 0.06, 0.08 and 0.10 (labelled as BSSOx100), using BaCO3, SnO2 and Sb2O5
as starting materials. Mechanically activated precursors were calcined at 900 °C for
4 h and subsequently sintered by Spark Plasma Sintering (SPS) Technique. For the
characterization of obtained ceramic samples various techniques were used: X-ray
Diffraction (XRD) analysis, High Resolution Transmission and Field Emission
electron microscopy (HRTEM and FESEM) and UV-Vis spectroscopy. Electrical
conductivity of BaSn1-xSbxO3 ceramic samples was determined by measuring the
current-voltage (I–U) characteristics in different mediums (air, silicon oil) at room
temperature and temperatures up to 150 °C.
XRD analysis confirmed the formation of the cubic BaSnO3 perovskite phase as
a major, and tetragonal Ba2SnO4 as a secondary phase. The content of Ba2SnO4
phase decreased with introducing of Sb into the BaSnO3 lattice. FESEM
micrographs of fractured BaSn1-xSbxO3 ceramic samples showed well-densified
microstructure and decrease of grain size with the increment of x. HRTEM analyses
revealed the existence of low angle grain boundary (LAGB), which provides low
energy conduction path of electrons. The results obtained from UV-Vis
spectroscopy, indicated the decrease of band gap value of BaSn1-xSbxO3 samples
with increasing Sb concentration. Electrical characterization confirmed that Sbdoped
BaSnO3 exhibits n-type conductivity. BaSn1-xSbxO3 samples with x = 0.04,
0.06, 0.08 showed linear I–U characteristics at temperatures up to 150 ºC. The
highest electrical conductivity was 1.96 S/cm for the BaSn0.92Sb0.08O3. The increase
of Sb concentration to x = 0.10 led to the loss of I–U characteristics' linearity.",
publisher = "University of Belgrade, Institute for Multidisciplinary Research",
journal = "5th Conference of the Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade",
title = "Spark plasma sintering of conductive Sb-doped BaSnO3",
pages = "136",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2037"
}
Vukašinović, J., Počuča-Nešić, M., Luković Golić, D., Dapčević, A., Kocen, M., Bernik, S., Lazović, V., Branković, Z.,& Branković, G.. (2019). Spark plasma sintering of conductive Sb-doped BaSnO3. in 5th Conference of the Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade
University of Belgrade, Institute for Multidisciplinary Research., 136.
https://hdl.handle.net/21.15107/rcub_rimsi_2037
Vukašinović J, Počuča-Nešić M, Luković Golić D, Dapčević A, Kocen M, Bernik S, Lazović V, Branković Z, Branković G. Spark plasma sintering of conductive Sb-doped BaSnO3. in 5th Conference of the Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade. 2019;:136.
https://hdl.handle.net/21.15107/rcub_rimsi_2037 .
Vukašinović, Jelena, Počuča-Nešić, Milica, Luković Golić, Danijela, Dapčević, Aleksandra, Kocen, Matej, Bernik, Slavko, Lazović, Vladimir, Branković, Zorica, Branković, Goran, "Spark plasma sintering of conductive Sb-doped BaSnO3" in 5th Conference of the Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade (2019):136,
https://hdl.handle.net/21.15107/rcub_rimsi_2037 .

Synthesis, characterization and photocatalytic properties of LaNiO3-based powders

Vukašinović, Jelena; Počuča-Nešić, Milica; Dapčević, Aleksandra; Ribić, Vesna; Branković, Goran; Branković, Zorica

(University of Belgrade, Institute for Multidisciplinary Research, 2019)

TY  - CONF
AU  - Vukašinović, Jelena
AU  - Počuča-Nešić, Milica
AU  - Dapčević, Aleksandra
AU  - Ribić, Vesna
AU  - Branković, Goran
AU  - Branković, Zorica
PY  - 2019
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2030
AB  - Lanthanum nickelate (LaNiO3, LNO) belongs to the group of materials with
perovskite-type structure and it crystallizes in rhombohedrally distorted perovskite
lattice. This material exhibits interesting electrical, magnetic, optical and catalytic
properties and it is suitable for various applications. Still, the preparation of single
phase LNO is difficult, because at temperatures above 850 °C it decomposes into the
lower oxides with formula Lan+1NinO3n+1 (n = 3, 2, 1) and NiO.
In this work we present the synthesis of pure and Nb doped LNO powders,
LaNi1-xNbxO3 (x = 0.000, 0.005, 0.010) prepared from mechanochemically activated
oxide precursors – La2O3, NiO and Nb2O5. For this experiment, precursor powders
homogenized in isopropyl alcohol were dried and mechanochemically activated in
the planetary ball mill for 3 h. As-prepared powders were calcined at 700 °C for 3 h
in air and further analyzed by X-ray diffraction analysis (XRD), Transmission
electron microscopy (TEM), Scanning electron microscopy (SEM) and UV-Vis
spectroscopy. Photocatalytic activity in visible light was investigated.
The XRD analysis of undoped LNO revealed the existence of rhombohedral
LaNiO3 and small amount of NiO phase. The doped samples, apart from LNO,
contained products of thermal decomposition – layered oxides and NiO. TEM and
HRTEM analyses of undoped LNO revealed the presence of agglomerated particles
with single particle size being in the range of 20–40 nm. Doping with Nb led to
decrease of agglomeration process and allowed better dispersion between particles
of LNO based powders. Calculated band gaps were 1.12 eV, 0.89 eV and 0.87 eV
for x = 0.00, 0.005, 0.010. The absorption spectra indicated photocatalytic
degradation of Reactive Orange 16, textile dye used as a model in these
experiments.
PB  - University of Belgrade, Institute for Multidisciplinary Research
C3  - 5th Conference of the Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia
T1  - Synthesis, characterization and photocatalytic properties of LaNiO3-based powders
SP  - 72
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2030
ER  - 
@conference{
author = "Vukašinović, Jelena and Počuča-Nešić, Milica and Dapčević, Aleksandra and Ribić, Vesna and Branković, Goran and Branković, Zorica",
year = "2019",
abstract = "Lanthanum nickelate (LaNiO3, LNO) belongs to the group of materials with
perovskite-type structure and it crystallizes in rhombohedrally distorted perovskite
lattice. This material exhibits interesting electrical, magnetic, optical and catalytic
properties and it is suitable for various applications. Still, the preparation of single
phase LNO is difficult, because at temperatures above 850 °C it decomposes into the
lower oxides with formula Lan+1NinO3n+1 (n = 3, 2, 1) and NiO.
In this work we present the synthesis of pure and Nb doped LNO powders,
LaNi1-xNbxO3 (x = 0.000, 0.005, 0.010) prepared from mechanochemically activated
oxide precursors – La2O3, NiO and Nb2O5. For this experiment, precursor powders
homogenized in isopropyl alcohol were dried and mechanochemically activated in
the planetary ball mill for 3 h. As-prepared powders were calcined at 700 °C for 3 h
in air and further analyzed by X-ray diffraction analysis (XRD), Transmission
electron microscopy (TEM), Scanning electron microscopy (SEM) and UV-Vis
spectroscopy. Photocatalytic activity in visible light was investigated.
The XRD analysis of undoped LNO revealed the existence of rhombohedral
LaNiO3 and small amount of NiO phase. The doped samples, apart from LNO,
contained products of thermal decomposition – layered oxides and NiO. TEM and
HRTEM analyses of undoped LNO revealed the presence of agglomerated particles
with single particle size being in the range of 20–40 nm. Doping with Nb led to
decrease of agglomeration process and allowed better dispersion between particles
of LNO based powders. Calculated band gaps were 1.12 eV, 0.89 eV and 0.87 eV
for x = 0.00, 0.005, 0.010. The absorption spectra indicated photocatalytic
degradation of Reactive Orange 16, textile dye used as a model in these
experiments.",
publisher = "University of Belgrade, Institute for Multidisciplinary Research",
journal = "5th Conference of the Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia",
title = "Synthesis, characterization and photocatalytic properties of LaNiO3-based powders",
pages = "72",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2030"
}
Vukašinović, J., Počuča-Nešić, M., Dapčević, A., Ribić, V., Branković, G.,& Branković, Z.. (2019). Synthesis, characterization and photocatalytic properties of LaNiO3-based powders. in 5th Conference of the Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia
University of Belgrade, Institute for Multidisciplinary Research., 72.
https://hdl.handle.net/21.15107/rcub_rimsi_2030
Vukašinović J, Počuča-Nešić M, Dapčević A, Ribić V, Branković G, Branković Z. Synthesis, characterization and photocatalytic properties of LaNiO3-based powders. in 5th Conference of the Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia. 2019;:72.
https://hdl.handle.net/21.15107/rcub_rimsi_2030 .
Vukašinović, Jelena, Počuča-Nešić, Milica, Dapčević, Aleksandra, Ribić, Vesna, Branković, Goran, Branković, Zorica, "Synthesis, characterization and photocatalytic properties of LaNiO3-based powders" in 5th Conference of the Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia (2019):72,
https://hdl.handle.net/21.15107/rcub_rimsi_2030 .

The influence of sintering processing on microstructural, optical and electrical properties of zinc oxide ceramics doped with Al3+, B3+, Mg2+

Luković Golić, Danijela; Vukašinović, Jelena; Ribić, Vesna; Kocen, Matej; Podlogar, Matejka; Dapčević, Aleksandra; Branković, Goran; Branković, Zorica

(University of Belgrade, Institute for Multidisciplinary Research, 2019)

TY  - CONF
AU  - Luković Golić, Danijela
AU  - Vukašinović, Jelena
AU  - Ribić, Vesna
AU  - Kocen, Matej
AU  - Podlogar, Matejka
AU  - Dapčević, Aleksandra
AU  - Branković, Goran
AU  - Branković, Zorica
PY  - 2019
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2036
AB  - Zinc oxide (ZnO) is a versatile functional material, widely employed in industry
and technology as varistor ceramics, transparent conducting films, surface acoustic
wave resonators etc. ZnO-based conductive ceramics, attractive for various
applications, should have low electrical resistivity and good linearity. The n-type
conductivity of wide band gap (3.37 eV) ZnO semiconductor could be enhanced by
multiple doping with trivalent metals (B3+, Al3+, Ga3+, In3+), as shallow donors. The
intrinsic defects, zinc vacancies and interstitial oxygen, exist in the grain boundaries
of n-type ZnO ceramics as localized acceptor states. These states attract charge
carriers, creating a depletion region around the grain boundaries and energy
potential barrier, which hinder the motion of the electrons [1]. In this work, zinc
oxide ceramics doped with Al3+, B3+ and Mg2+ was prepared using solid-state
reaction technique from ZnO powder obtained in solvothermal synthesis and Al2O3,
MgO and B2O3 (H3BO3) commercial powders. Al2O3 was used as a donor dopant to
increase the carrier concentration, B2O3 was added to enhance densification and
grain growth, and MgO – to decrease the thermal conductivity [2,3]. The pressed
ZnO (0.25 % Al2O3, 0.5 % B2O3, 1 % MgO) pellets were sintered by conventional
(CS) and spark plasma (SPS) method. The ceramic samples were analyzed by X-ray
diffraction (XRD), scanning electron microscopy (SEM), transmission electron
microscopy (TEM), UV-Vis spectroscopy and current-voltage (I–U) measurements.
The correlation between the sintering processing, microstructure and electrical
properties of multiple doped ZnO-based ceramics was investigated. The electrical
performances of ZnO (0.25 % Al2O3, 0.5 % B2O3, 1 % MgO) ceramics were
strongly dependent on composition and microstructure (density, grain size,
segregation of secondary phase in grain boundaries). The electrical resistivity of SPS
sample was an order of magnitude lower than electrical resistivity of CS sample and
it showed almost linear I-U characteristics in temperature range of (25–150) C.
1. T.K. Gupta, W.G. Carlson, J. Mater. Sci., 20 (1985) 3487
2. T. Tian, L. Cheng, J. Xing, L. Zheng, Z. Man, D. Hu, S. Bernik, J. Zeng, J. Yang, Y.
Liu, G. Li, Mater. Design, 132 (2017) 479
3. B. Yuksel, T. O. Ozkan, Mater. Sci. – Poland, 33 (2015) 220
PB  - University of Belgrade, Institute for Multidisciplinary Research
C3  - 5th Conference of the Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia
T1  - The influence of sintering processing on microstructural, optical and electrical properties of zinc oxide ceramics  doped with Al3+, B3+, Mg2+
EP  - 135
SP  - 134
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2036
ER  - 
@conference{
author = "Luković Golić, Danijela and Vukašinović, Jelena and Ribić, Vesna and Kocen, Matej and Podlogar, Matejka and Dapčević, Aleksandra and Branković, Goran and Branković, Zorica",
year = "2019",
abstract = "Zinc oxide (ZnO) is a versatile functional material, widely employed in industry
and technology as varistor ceramics, transparent conducting films, surface acoustic
wave resonators etc. ZnO-based conductive ceramics, attractive for various
applications, should have low electrical resistivity and good linearity. The n-type
conductivity of wide band gap (3.37 eV) ZnO semiconductor could be enhanced by
multiple doping with trivalent metals (B3+, Al3+, Ga3+, In3+), as shallow donors. The
intrinsic defects, zinc vacancies and interstitial oxygen, exist in the grain boundaries
of n-type ZnO ceramics as localized acceptor states. These states attract charge
carriers, creating a depletion region around the grain boundaries and energy
potential barrier, which hinder the motion of the electrons [1]. In this work, zinc
oxide ceramics doped with Al3+, B3+ and Mg2+ was prepared using solid-state
reaction technique from ZnO powder obtained in solvothermal synthesis and Al2O3,
MgO and B2O3 (H3BO3) commercial powders. Al2O3 was used as a donor dopant to
increase the carrier concentration, B2O3 was added to enhance densification and
grain growth, and MgO – to decrease the thermal conductivity [2,3]. The pressed
ZnO (0.25 % Al2O3, 0.5 % B2O3, 1 % MgO) pellets were sintered by conventional
(CS) and spark plasma (SPS) method. The ceramic samples were analyzed by X-ray
diffraction (XRD), scanning electron microscopy (SEM), transmission electron
microscopy (TEM), UV-Vis spectroscopy and current-voltage (I–U) measurements.
The correlation between the sintering processing, microstructure and electrical
properties of multiple doped ZnO-based ceramics was investigated. The electrical
performances of ZnO (0.25 % Al2O3, 0.5 % B2O3, 1 % MgO) ceramics were
strongly dependent on composition and microstructure (density, grain size,
segregation of secondary phase in grain boundaries). The electrical resistivity of SPS
sample was an order of magnitude lower than electrical resistivity of CS sample and
it showed almost linear I-U characteristics in temperature range of (25–150) C.
1. T.K. Gupta, W.G. Carlson, J. Mater. Sci., 20 (1985) 3487
2. T. Tian, L. Cheng, J. Xing, L. Zheng, Z. Man, D. Hu, S. Bernik, J. Zeng, J. Yang, Y.
Liu, G. Li, Mater. Design, 132 (2017) 479
3. B. Yuksel, T. O. Ozkan, Mater. Sci. – Poland, 33 (2015) 220",
publisher = "University of Belgrade, Institute for Multidisciplinary Research",
journal = "5th Conference of the Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia",
title = "The influence of sintering processing on microstructural, optical and electrical properties of zinc oxide ceramics  doped with Al3+, B3+, Mg2+",
pages = "135-134",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2036"
}
Luković Golić, D., Vukašinović, J., Ribić, V., Kocen, M., Podlogar, M., Dapčević, A., Branković, G.,& Branković, Z.. (2019). The influence of sintering processing on microstructural, optical and electrical properties of zinc oxide ceramics  doped with Al3+, B3+, Mg2+. in 5th Conference of the Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia
University of Belgrade, Institute for Multidisciplinary Research., 134-135.
https://hdl.handle.net/21.15107/rcub_rimsi_2036
Luković Golić D, Vukašinović J, Ribić V, Kocen M, Podlogar M, Dapčević A, Branković G, Branković Z. The influence of sintering processing on microstructural, optical and electrical properties of zinc oxide ceramics  doped with Al3+, B3+, Mg2+. in 5th Conference of the Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia. 2019;:134-135.
https://hdl.handle.net/21.15107/rcub_rimsi_2036 .
Luković Golić, Danijela, Vukašinović, Jelena, Ribić, Vesna, Kocen, Matej, Podlogar, Matejka, Dapčević, Aleksandra, Branković, Goran, Branković, Zorica, "The influence of sintering processing on microstructural, optical and electrical properties of zinc oxide ceramics  doped with Al3+, B3+, Mg2+" in 5th Conference of the Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia (2019):134-135,
https://hdl.handle.net/21.15107/rcub_rimsi_2036 .

CuO-based nanoplatelets for humidity sensing application

Malešević, Aleksandar; Tasić, Nikola; Ćirković, Jovana; Vukašinović, Jelena; Dapčević, Aleksandra; Ribić, Vesna; Branković, Zorica; Branković, Goran

(University of Belgrade, Institute for Multidisciplinary Research, 2019)

TY  - CONF
AU  - Malešević, Aleksandar
AU  - Tasić, Nikola
AU  - Ćirković, Jovana
AU  - Vukašinović, Jelena
AU  - Dapčević, Aleksandra
AU  - Ribić, Vesna
AU  - Branković, Zorica
AU  - Branković, Goran
PY  - 2019
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2032
AB  - Determination and monitoring of humidity level is of great importance because
water is one of essential components of the living organisms and materials used by
people. Metal oxides are the most popular materials used as sensing elements for
humidity sensors, due to their excellent thermal and environmental stability, high
mechanical strength, wide range of working temperature, low fabrication cost and
robustness in practical applications. Humidity sensing ability of metal oxide based
ceramic materials can be enhanced by doping with metal cations.
In this work, we present hydrothermal method for preparation of pure and Mgdoped
CuO nanoplatelets and investigate their sensing properties towards humidity.
The proposed method involves autoclaving of copper(II)-acetate solution under
autogenous pressure in alkaline conditions, with different concentrations of Mgdopant
(0, 2.5, 5 and 10 mol%). We have performed thorough structural and optical
investigations of as synthesized material (TEM, XRD, SAED, UV-VIS-NIR).
Furthermore, we have processed obtained powders into functional thick films using doctor blade technique, and their sensing properties were tested in wide range of
temperatures (25, 50, 75 °C) and relative humidities (40–90%), resulting with strong
response and promising response/recovery times.
PB  - University of Belgrade, Institute for Multidisciplinary Research
C3  - 5th Conference of the Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia
T1  - CuO-based nanoplatelets for humidity sensing application
EP  - 81
SP  - 80
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2032
ER  - 
@conference{
author = "Malešević, Aleksandar and Tasić, Nikola and Ćirković, Jovana and Vukašinović, Jelena and Dapčević, Aleksandra and Ribić, Vesna and Branković, Zorica and Branković, Goran",
year = "2019",
abstract = "Determination and monitoring of humidity level is of great importance because
water is one of essential components of the living organisms and materials used by
people. Metal oxides are the most popular materials used as sensing elements for
humidity sensors, due to their excellent thermal and environmental stability, high
mechanical strength, wide range of working temperature, low fabrication cost and
robustness in practical applications. Humidity sensing ability of metal oxide based
ceramic materials can be enhanced by doping with metal cations.
In this work, we present hydrothermal method for preparation of pure and Mgdoped
CuO nanoplatelets and investigate their sensing properties towards humidity.
The proposed method involves autoclaving of copper(II)-acetate solution under
autogenous pressure in alkaline conditions, with different concentrations of Mgdopant
(0, 2.5, 5 and 10 mol%). We have performed thorough structural and optical
investigations of as synthesized material (TEM, XRD, SAED, UV-VIS-NIR).
Furthermore, we have processed obtained powders into functional thick films using doctor blade technique, and their sensing properties were tested in wide range of
temperatures (25, 50, 75 °C) and relative humidities (40–90%), resulting with strong
response and promising response/recovery times.",
publisher = "University of Belgrade, Institute for Multidisciplinary Research",
journal = "5th Conference of the Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia",
title = "CuO-based nanoplatelets for humidity sensing application",
pages = "81-80",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2032"
}
Malešević, A., Tasić, N., Ćirković, J., Vukašinović, J., Dapčević, A., Ribić, V., Branković, Z.,& Branković, G.. (2019). CuO-based nanoplatelets for humidity sensing application. in 5th Conference of the Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia
University of Belgrade, Institute for Multidisciplinary Research., 80-81.
https://hdl.handle.net/21.15107/rcub_rimsi_2032
Malešević A, Tasić N, Ćirković J, Vukašinović J, Dapčević A, Ribić V, Branković Z, Branković G. CuO-based nanoplatelets for humidity sensing application. in 5th Conference of the Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia. 2019;:80-81.
https://hdl.handle.net/21.15107/rcub_rimsi_2032 .
Malešević, Aleksandar, Tasić, Nikola, Ćirković, Jovana, Vukašinović, Jelena, Dapčević, Aleksandra, Ribić, Vesna, Branković, Zorica, Branković, Goran, "CuO-based nanoplatelets for humidity sensing application" in 5th Conference of the Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia (2019):80-81,
https://hdl.handle.net/21.15107/rcub_rimsi_2032 .