Kocen, Matej

Link to this page

Authority KeyName Variants
eea11624-7733-4607-a560-e9d96f7565c5
  • Kocen, Matej (4)
Projects

Author's Bibliography

The structural, electrical and optical properties of spark plasma sintered BaSn1-xSbxO3 ceramics

Mitrović, Jelena; Počuča-Nešić, Milica; Luković Golić, Danijela; Ribić, Vesna; Branković, Zorica; Savić, Slavica M.; Dapčević, Aleksandra; Bernik, Slavko; Podlogar, Matejka; Kocen, Matej; Rapljenović, Zeljko; Ivek, Tomislav; Lazović, Vladimir; Dojčinović, Biljana; Branković, Goran

(Elsevier Sci Ltd, Oxford, 2020)

TY  - JOUR
AU  - Mitrović, Jelena
AU  - Počuča-Nešić, Milica
AU  - Luković Golić, Danijela
AU  - Ribić, Vesna
AU  - Branković, Zorica
AU  - Savić, Slavica M.
AU  - Dapčević, Aleksandra
AU  - Bernik, Slavko
AU  - Podlogar, Matejka
AU  - Kocen, Matej
AU  - Rapljenović, Zeljko
AU  - Ivek, Tomislav
AU  - Lazović, Vladimir
AU  - Dojčinović, Biljana
AU  - Branković, Goran
PY  - 2020
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1363
AB  - Antimony doped barium-stannate dense ceramic materials were synthesized using spark plasma sintering technique out of mechanically activated precursor powders. The influence of various Sb concentrations (x = 0.00 - 0.10) on properties of BaSn1-xSbxO3 ceramics was investigated. Relative densities of prepared samples were in the range of (79-96) %. TEM analysis revealed the presence of many dislocations in undoped BaSnO3, and their significant reduction upon doping with Sb. All samples except BaSn0.92Sb0.08O3 exhibit non-linear I-U characteristic, typical for semiconductors with potential barrier at grain boundaries. Low angle grain boundaries found only in BaSn0.92Sb0.08O3 caused the loss of potential barrier at grain boundaries which was confirmed by AC impedance spectroscopy measurements. Consequently, BaSn0.92Sb0.08O3 showed the lowest electrical resistivity and linear I-U characteristic. UV-vis analysis confirmed the increasing of band gap (Burstein-Moss shift) values in all doped samples.
PB  - Elsevier Sci Ltd, Oxford
T2  - Journal of the European Ceramic Society
T1  - The structural, electrical and optical properties of spark plasma sintered BaSn1-xSbxO3 ceramics
EP  - 5575
IS  - 15
SP  - 5566
VL  - 40
DO  - 10.1016/j.jeurceramsoc.2020.06.062
ER  - 
@article{
author = "Mitrović, Jelena and Počuča-Nešić, Milica and Luković Golić, Danijela and Ribić, Vesna and Branković, Zorica and Savić, Slavica M. and Dapčević, Aleksandra and Bernik, Slavko and Podlogar, Matejka and Kocen, Matej and Rapljenović, Zeljko and Ivek, Tomislav and Lazović, Vladimir and Dojčinović, Biljana and Branković, Goran",
year = "2020",
abstract = "Antimony doped barium-stannate dense ceramic materials were synthesized using spark plasma sintering technique out of mechanically activated precursor powders. The influence of various Sb concentrations (x = 0.00 - 0.10) on properties of BaSn1-xSbxO3 ceramics was investigated. Relative densities of prepared samples were in the range of (79-96) %. TEM analysis revealed the presence of many dislocations in undoped BaSnO3, and their significant reduction upon doping with Sb. All samples except BaSn0.92Sb0.08O3 exhibit non-linear I-U characteristic, typical for semiconductors with potential barrier at grain boundaries. Low angle grain boundaries found only in BaSn0.92Sb0.08O3 caused the loss of potential barrier at grain boundaries which was confirmed by AC impedance spectroscopy measurements. Consequently, BaSn0.92Sb0.08O3 showed the lowest electrical resistivity and linear I-U characteristic. UV-vis analysis confirmed the increasing of band gap (Burstein-Moss shift) values in all doped samples.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Journal of the European Ceramic Society",
title = "The structural, electrical and optical properties of spark plasma sintered BaSn1-xSbxO3 ceramics",
pages = "5575-5566",
number = "15",
volume = "40",
doi = "10.1016/j.jeurceramsoc.2020.06.062"
}
Mitrović, J., Počuča-Nešić, M., Luković Golić, D., Ribić, V., Branković, Z., Savić, S. M., Dapčević, A., Bernik, S., Podlogar, M., Kocen, M., Rapljenović, Z., Ivek, T., Lazović, V., Dojčinović, B.,& Branković, G.. (2020). The structural, electrical and optical properties of spark plasma sintered BaSn1-xSbxO3 ceramics. in Journal of the European Ceramic Society
Elsevier Sci Ltd, Oxford., 40(15), 5566-5575.
https://doi.org/10.1016/j.jeurceramsoc.2020.06.062
Mitrović J, Počuča-Nešić M, Luković Golić D, Ribić V, Branković Z, Savić SM, Dapčević A, Bernik S, Podlogar M, Kocen M, Rapljenović Z, Ivek T, Lazović V, Dojčinović B, Branković G. The structural, electrical and optical properties of spark plasma sintered BaSn1-xSbxO3 ceramics. in Journal of the European Ceramic Society. 2020;40(15):5566-5575.
doi:10.1016/j.jeurceramsoc.2020.06.062 .
Mitrović, Jelena, Počuča-Nešić, Milica, Luković Golić, Danijela, Ribić, Vesna, Branković, Zorica, Savić, Slavica M., Dapčević, Aleksandra, Bernik, Slavko, Podlogar, Matejka, Kocen, Matej, Rapljenović, Zeljko, Ivek, Tomislav, Lazović, Vladimir, Dojčinović, Biljana, Branković, Goran, "The structural, electrical and optical properties of spark plasma sintered BaSn1-xSbxO3 ceramics" in Journal of the European Ceramic Society, 40, no. 15 (2020):5566-5575,
https://doi.org/10.1016/j.jeurceramsoc.2020.06.062 . .
2
3

Spark plasma sintering of conductive Sb-doped BaSnO3

Vukašinović, Jelena; Počuča-Nešić, Milica; Luković Golić, Danijela; Dapčević, Aleksandra; Kocen, Matej; Bernik, Slavko; Lazović, Vladimir; Branković, Zorica; Branković, Goran

(University of Belgrade, Institute for Multidisciplinary Research, 2019)

TY  - CONF
AU  - Vukašinović, Jelena
AU  - Počuča-Nešić, Milica
AU  - Luković Golić, Danijela
AU  - Dapčević, Aleksandra
AU  - Kocen, Matej
AU  - Bernik, Slavko
AU  - Lazović, Vladimir
AU  - Branković, Zorica
AU  - Branković, Goran
PY  - 2019
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2037
AB  - Barium stannate, BaSnO3, belongs to the group of perovskite-type alkaline earth
stannates. It is an electrical insulator, but doping with proper cation can change its’
electrical properties and transform it into an n-type semiconductor.
In this work, we present the Sb-doped barium stannate, BaSn1-xSbxO3, x = 0.00,
0.04, 0.06, 0.08 and 0.10 (labelled as BSSOx100), using BaCO3, SnO2 and Sb2O5
as starting materials. Mechanically activated precursors were calcined at 900 °C for
4 h and subsequently sintered by Spark Plasma Sintering (SPS) Technique. For the
characterization of obtained ceramic samples various techniques were used: X-ray
Diffraction (XRD) analysis, High Resolution Transmission and Field Emission
electron microscopy (HRTEM and FESEM) and UV-Vis spectroscopy. Electrical
conductivity of BaSn1-xSbxO3 ceramic samples was determined by measuring the
current-voltage (I–U) characteristics in different mediums (air, silicon oil) at room
temperature and temperatures up to 150 °C.
XRD analysis confirmed the formation of the cubic BaSnO3 perovskite phase as
a major, and tetragonal Ba2SnO4 as a secondary phase. The content of Ba2SnO4
phase decreased with introducing of Sb into the BaSnO3 lattice. FESEM
micrographs of fractured BaSn1-xSbxO3 ceramic samples showed well-densified
microstructure and decrease of grain size with the increment of x. HRTEM analyses
revealed the existence of low angle grain boundary (LAGB), which provides low
energy conduction path of electrons. The results obtained from UV-Vis
spectroscopy, indicated the decrease of band gap value of BaSn1-xSbxO3 samples
with increasing Sb concentration. Electrical characterization confirmed that Sbdoped
BaSnO3 exhibits n-type conductivity. BaSn1-xSbxO3 samples with x = 0.04,
0.06, 0.08 showed linear I–U characteristics at temperatures up to 150 ºC. The
highest electrical conductivity was 1.96 S/cm for the BaSn0.92Sb0.08O3. The increase
of Sb concentration to x = 0.10 led to the loss of I–U characteristics' linearity.
PB  - University of Belgrade, Institute for Multidisciplinary Research
C3  - 5th Conference of the Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade
T1  - Spark plasma sintering of conductive Sb-doped BaSnO3
SP  - 136
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2037
ER  - 
@conference{
author = "Vukašinović, Jelena and Počuča-Nešić, Milica and Luković Golić, Danijela and Dapčević, Aleksandra and Kocen, Matej and Bernik, Slavko and Lazović, Vladimir and Branković, Zorica and Branković, Goran",
year = "2019",
abstract = "Barium stannate, BaSnO3, belongs to the group of perovskite-type alkaline earth
stannates. It is an electrical insulator, but doping with proper cation can change its’
electrical properties and transform it into an n-type semiconductor.
In this work, we present the Sb-doped barium stannate, BaSn1-xSbxO3, x = 0.00,
0.04, 0.06, 0.08 and 0.10 (labelled as BSSOx100), using BaCO3, SnO2 and Sb2O5
as starting materials. Mechanically activated precursors were calcined at 900 °C for
4 h and subsequently sintered by Spark Plasma Sintering (SPS) Technique. For the
characterization of obtained ceramic samples various techniques were used: X-ray
Diffraction (XRD) analysis, High Resolution Transmission and Field Emission
electron microscopy (HRTEM and FESEM) and UV-Vis spectroscopy. Electrical
conductivity of BaSn1-xSbxO3 ceramic samples was determined by measuring the
current-voltage (I–U) characteristics in different mediums (air, silicon oil) at room
temperature and temperatures up to 150 °C.
XRD analysis confirmed the formation of the cubic BaSnO3 perovskite phase as
a major, and tetragonal Ba2SnO4 as a secondary phase. The content of Ba2SnO4
phase decreased with introducing of Sb into the BaSnO3 lattice. FESEM
micrographs of fractured BaSn1-xSbxO3 ceramic samples showed well-densified
microstructure and decrease of grain size with the increment of x. HRTEM analyses
revealed the existence of low angle grain boundary (LAGB), which provides low
energy conduction path of electrons. The results obtained from UV-Vis
spectroscopy, indicated the decrease of band gap value of BaSn1-xSbxO3 samples
with increasing Sb concentration. Electrical characterization confirmed that Sbdoped
BaSnO3 exhibits n-type conductivity. BaSn1-xSbxO3 samples with x = 0.04,
0.06, 0.08 showed linear I–U characteristics at temperatures up to 150 ºC. The
highest electrical conductivity was 1.96 S/cm for the BaSn0.92Sb0.08O3. The increase
of Sb concentration to x = 0.10 led to the loss of I–U characteristics' linearity.",
publisher = "University of Belgrade, Institute for Multidisciplinary Research",
journal = "5th Conference of the Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade",
title = "Spark plasma sintering of conductive Sb-doped BaSnO3",
pages = "136",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2037"
}
Vukašinović, J., Počuča-Nešić, M., Luković Golić, D., Dapčević, A., Kocen, M., Bernik, S., Lazović, V., Branković, Z.,& Branković, G.. (2019). Spark plasma sintering of conductive Sb-doped BaSnO3. in 5th Conference of the Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade
University of Belgrade, Institute for Multidisciplinary Research., 136.
https://hdl.handle.net/21.15107/rcub_rimsi_2037
Vukašinović J, Počuča-Nešić M, Luković Golić D, Dapčević A, Kocen M, Bernik S, Lazović V, Branković Z, Branković G. Spark plasma sintering of conductive Sb-doped BaSnO3. in 5th Conference of the Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade. 2019;:136.
https://hdl.handle.net/21.15107/rcub_rimsi_2037 .
Vukašinović, Jelena, Počuča-Nešić, Milica, Luković Golić, Danijela, Dapčević, Aleksandra, Kocen, Matej, Bernik, Slavko, Lazović, Vladimir, Branković, Zorica, Branković, Goran, "Spark plasma sintering of conductive Sb-doped BaSnO3" in 5th Conference of the Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade (2019):136,
https://hdl.handle.net/21.15107/rcub_rimsi_2037 .

The influence of sintering processing on microstructural, optical and electrical properties of zinc oxide ceramics doped with Al3+, B3+, Mg2+

Luković Golić, Danijela; Vukašinović, Jelena; Ribić, Vesna; Kocen, Matej; Podlogar, Matejka; Dapčević, Aleksandra; Branković, Goran; Branković, Zorica

(University of Belgrade, Institute for Multidisciplinary Research, 2019)

TY  - CONF
AU  - Luković Golić, Danijela
AU  - Vukašinović, Jelena
AU  - Ribić, Vesna
AU  - Kocen, Matej
AU  - Podlogar, Matejka
AU  - Dapčević, Aleksandra
AU  - Branković, Goran
AU  - Branković, Zorica
PY  - 2019
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2036
AB  - Zinc oxide (ZnO) is a versatile functional material, widely employed in industry
and technology as varistor ceramics, transparent conducting films, surface acoustic
wave resonators etc. ZnO-based conductive ceramics, attractive for various
applications, should have low electrical resistivity and good linearity. The n-type
conductivity of wide band gap (3.37 eV) ZnO semiconductor could be enhanced by
multiple doping with trivalent metals (B3+, Al3+, Ga3+, In3+), as shallow donors. The
intrinsic defects, zinc vacancies and interstitial oxygen, exist in the grain boundaries
of n-type ZnO ceramics as localized acceptor states. These states attract charge
carriers, creating a depletion region around the grain boundaries and energy
potential barrier, which hinder the motion of the electrons [1]. In this work, zinc
oxide ceramics doped with Al3+, B3+ and Mg2+ was prepared using solid-state
reaction technique from ZnO powder obtained in solvothermal synthesis and Al2O3,
MgO and B2O3 (H3BO3) commercial powders. Al2O3 was used as a donor dopant to
increase the carrier concentration, B2O3 was added to enhance densification and
grain growth, and MgO – to decrease the thermal conductivity [2,3]. The pressed
ZnO (0.25 % Al2O3, 0.5 % B2O3, 1 % MgO) pellets were sintered by conventional
(CS) and spark plasma (SPS) method. The ceramic samples were analyzed by X-ray
diffraction (XRD), scanning electron microscopy (SEM), transmission electron
microscopy (TEM), UV-Vis spectroscopy and current-voltage (I–U) measurements.
The correlation between the sintering processing, microstructure and electrical
properties of multiple doped ZnO-based ceramics was investigated. The electrical
performances of ZnO (0.25 % Al2O3, 0.5 % B2O3, 1 % MgO) ceramics were
strongly dependent on composition and microstructure (density, grain size,
segregation of secondary phase in grain boundaries). The electrical resistivity of SPS
sample was an order of magnitude lower than electrical resistivity of CS sample and
it showed almost linear I-U characteristics in temperature range of (25–150) C.
1. T.K. Gupta, W.G. Carlson, J. Mater. Sci., 20 (1985) 3487
2. T. Tian, L. Cheng, J. Xing, L. Zheng, Z. Man, D. Hu, S. Bernik, J. Zeng, J. Yang, Y.
Liu, G. Li, Mater. Design, 132 (2017) 479
3. B. Yuksel, T. O. Ozkan, Mater. Sci. – Poland, 33 (2015) 220
PB  - University of Belgrade, Institute for Multidisciplinary Research
C3  - 5th Conference of the Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia
T1  - The influence of sintering processing on microstructural, optical and electrical properties of zinc oxide ceramics  doped with Al3+, B3+, Mg2+
EP  - 135
SP  - 134
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2036
ER  - 
@conference{
author = "Luković Golić, Danijela and Vukašinović, Jelena and Ribić, Vesna and Kocen, Matej and Podlogar, Matejka and Dapčević, Aleksandra and Branković, Goran and Branković, Zorica",
year = "2019",
abstract = "Zinc oxide (ZnO) is a versatile functional material, widely employed in industry
and technology as varistor ceramics, transparent conducting films, surface acoustic
wave resonators etc. ZnO-based conductive ceramics, attractive for various
applications, should have low electrical resistivity and good linearity. The n-type
conductivity of wide band gap (3.37 eV) ZnO semiconductor could be enhanced by
multiple doping with trivalent metals (B3+, Al3+, Ga3+, In3+), as shallow donors. The
intrinsic defects, zinc vacancies and interstitial oxygen, exist in the grain boundaries
of n-type ZnO ceramics as localized acceptor states. These states attract charge
carriers, creating a depletion region around the grain boundaries and energy
potential barrier, which hinder the motion of the electrons [1]. In this work, zinc
oxide ceramics doped with Al3+, B3+ and Mg2+ was prepared using solid-state
reaction technique from ZnO powder obtained in solvothermal synthesis and Al2O3,
MgO and B2O3 (H3BO3) commercial powders. Al2O3 was used as a donor dopant to
increase the carrier concentration, B2O3 was added to enhance densification and
grain growth, and MgO – to decrease the thermal conductivity [2,3]. The pressed
ZnO (0.25 % Al2O3, 0.5 % B2O3, 1 % MgO) pellets were sintered by conventional
(CS) and spark plasma (SPS) method. The ceramic samples were analyzed by X-ray
diffraction (XRD), scanning electron microscopy (SEM), transmission electron
microscopy (TEM), UV-Vis spectroscopy and current-voltage (I–U) measurements.
The correlation between the sintering processing, microstructure and electrical
properties of multiple doped ZnO-based ceramics was investigated. The electrical
performances of ZnO (0.25 % Al2O3, 0.5 % B2O3, 1 % MgO) ceramics were
strongly dependent on composition and microstructure (density, grain size,
segregation of secondary phase in grain boundaries). The electrical resistivity of SPS
sample was an order of magnitude lower than electrical resistivity of CS sample and
it showed almost linear I-U characteristics in temperature range of (25–150) C.
1. T.K. Gupta, W.G. Carlson, J. Mater. Sci., 20 (1985) 3487
2. T. Tian, L. Cheng, J. Xing, L. Zheng, Z. Man, D. Hu, S. Bernik, J. Zeng, J. Yang, Y.
Liu, G. Li, Mater. Design, 132 (2017) 479
3. B. Yuksel, T. O. Ozkan, Mater. Sci. – Poland, 33 (2015) 220",
publisher = "University of Belgrade, Institute for Multidisciplinary Research",
journal = "5th Conference of the Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia",
title = "The influence of sintering processing on microstructural, optical and electrical properties of zinc oxide ceramics  doped with Al3+, B3+, Mg2+",
pages = "135-134",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2036"
}
Luković Golić, D., Vukašinović, J., Ribić, V., Kocen, M., Podlogar, M., Dapčević, A., Branković, G.,& Branković, Z.. (2019). The influence of sintering processing on microstructural, optical and electrical properties of zinc oxide ceramics  doped with Al3+, B3+, Mg2+. in 5th Conference of the Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia
University of Belgrade, Institute for Multidisciplinary Research., 134-135.
https://hdl.handle.net/21.15107/rcub_rimsi_2036
Luković Golić D, Vukašinović J, Ribić V, Kocen M, Podlogar M, Dapčević A, Branković G, Branković Z. The influence of sintering processing on microstructural, optical and electrical properties of zinc oxide ceramics  doped with Al3+, B3+, Mg2+. in 5th Conference of the Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia. 2019;:134-135.
https://hdl.handle.net/21.15107/rcub_rimsi_2036 .
Luković Golić, Danijela, Vukašinović, Jelena, Ribić, Vesna, Kocen, Matej, Podlogar, Matejka, Dapčević, Aleksandra, Branković, Goran, Branković, Zorica, "The influence of sintering processing on microstructural, optical and electrical properties of zinc oxide ceramics  doped with Al3+, B3+, Mg2+" in 5th Conference of the Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia (2019):134-135,
https://hdl.handle.net/21.15107/rcub_rimsi_2036 .

Improvement of density and influence of Sb doping on structural properties of perovskite BaSnO3

Vukašinović, Jelena; Počuča-Nešić, Milica; Luković Golić, Danijela; Savic, Slavica; Branković, Zorica; Tasić, Nikola; Dapčević, Aleksandra; Bernik, Slavko; Kocen, Matej; Branković, Goran

(Belgrade : Serbian Academy of Sciences and Arts, 2018)

TY  - CONF
AU  - Vukašinović, Jelena
AU  - Počuča-Nešić, Milica
AU  - Luković Golić, Danijela
AU  - Savic, Slavica
AU  - Branković, Zorica
AU  - Tasić, Nikola
AU  - Dapčević, Aleksandra
AU  - Bernik, Slavko
AU  - Kocen, Matej
AU  - Branković, Goran
PY  - 2018
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2035
AB  - Perovskite-type materials are widely important class of materials due to their
interesting physical properties, such as superconductivity, ferromagnetism,
ferroelectricity, piezoelectricity, and many others [1]. Barium stannate (BaSnO3) is
crystalizing in an ideal cubic structure, and has good chemical and thermal stability
at high temperatures up to 1200 °C. Undoped BaSnO3 is an n-type semiconductor
with a band gap of ~3.1 eV [1]. BaSnO3 finds application as dielectric ceramic
material, transparent conducting oxide (TCO), resistor, photocatalyst, photoanode
material, gas sensor for many gases, protonic conductor. Doping with antimony (Sb)
can improve the electrical conductivity and enhance density during sintering [1-4].
In this work samples of BaSn1-xSbxO3 (x = 0.04, 0.06, 0.08, 0.1) were prepared by
mechanochemically assisted solid state method. Precursor powders BaCO3, SnO2
and Sb2O3 were mechanochemically activated in isopropanol for 8h. After drying
prepared powders were calcined at 900 °C for 4h in air. Calcined powder were
mounted into a carbon die and subsequently sintered by spark plasma sintering (SPS)
at 1200 °C for 5 minutes. Structural properties of the obtained ceramic samples of
(BaSn1-xSbxO3) were completely characterized by X-ray diffraction (XRD), scanning
electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and
atomic force microscopy (AFM). Electrical properties of the ceramic BaSn1-xSbxO3
samples were determined by measuring the current-voltage characteristics at room
temperature and elevated temperatures in different mediums (air, silicon oil). The XRD analysis showed the formation of the cubic perovskite BaSnO3 as a major phase
and Ba2SnO4 as a secondary phase. The content of tetragonal secondary phase of
Ba2SnO4 was approximately the same in all samples. This confirmed that presence
of Sb did not influence the forming of Ba2SnO4. Ionic radius of Sb3+ (0.076 nm) is
larger than ionic radius of Sn4+ (0.069 nm), and it incorporation by lattice leads to
the increase of lattice parameter [4]. The cubic lattice parameter a was estimated to
be 0.41287(9), 0.41301(9), 0.41321(9) and 0.41302(4) nm for x =0.04, 0.06, 0.08 and
0.1, respectively. The relative densities were 95.2 %, 84.2 %, 85.9 % and 79.2 %
for x =0.04, 0.06, 0.08 and 0.1, respectively The SEM images of the fractured
surfaces of the obtained ceramics revealed that all samples were well-densified,
with the trend of reducing a grain size with increasing of Sb concentration. The
AFM images showed the existence of various particles shapes, with the particle
size of around 36 nm.

References:
[1] M Hiroshi et al, Chemistry of Materials 25 (19) (2013), 3858.
[2] Y Masahiro et al, Materials Science and Engineering B 173 (2010), 29.
[3] L Wenzhong et al, Sensors and Actuators 80 (2000), 35.
[4] Y Daisuke et al, Materials Science and Engineering B 173 (2010), 33.
[5] The authors would like to acknowledge the financial support of the Ministry of
Education, Science and Technological Development of the Republic of Serbia,
project III 45007.
PB  - Belgrade : Serbian Academy of Sciences and Arts
C3  - 1st International Conference: „Electron Microscopy of Nanostructures“, ELMINA, 2018 Conference, August 27-29, 2018, Belgrade, Serbia
T1  - Improvement of density and influence of Sb doping on structural properties of perovskite BaSnO3
EP  - 167
SP  - 166
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2035
ER  - 
@conference{
author = "Vukašinović, Jelena and Počuča-Nešić, Milica and Luković Golić, Danijela and Savic, Slavica and Branković, Zorica and Tasić, Nikola and Dapčević, Aleksandra and Bernik, Slavko and Kocen, Matej and Branković, Goran",
year = "2018",
abstract = "Perovskite-type materials are widely important class of materials due to their
interesting physical properties, such as superconductivity, ferromagnetism,
ferroelectricity, piezoelectricity, and many others [1]. Barium stannate (BaSnO3) is
crystalizing in an ideal cubic structure, and has good chemical and thermal stability
at high temperatures up to 1200 °C. Undoped BaSnO3 is an n-type semiconductor
with a band gap of ~3.1 eV [1]. BaSnO3 finds application as dielectric ceramic
material, transparent conducting oxide (TCO), resistor, photocatalyst, photoanode
material, gas sensor for many gases, protonic conductor. Doping with antimony (Sb)
can improve the electrical conductivity and enhance density during sintering [1-4].
In this work samples of BaSn1-xSbxO3 (x = 0.04, 0.06, 0.08, 0.1) were prepared by
mechanochemically assisted solid state method. Precursor powders BaCO3, SnO2
and Sb2O3 were mechanochemically activated in isopropanol for 8h. After drying
prepared powders were calcined at 900 °C for 4h in air. Calcined powder were
mounted into a carbon die and subsequently sintered by spark plasma sintering (SPS)
at 1200 °C for 5 minutes. Structural properties of the obtained ceramic samples of
(BaSn1-xSbxO3) were completely characterized by X-ray diffraction (XRD), scanning
electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and
atomic force microscopy (AFM). Electrical properties of the ceramic BaSn1-xSbxO3
samples were determined by measuring the current-voltage characteristics at room
temperature and elevated temperatures in different mediums (air, silicon oil). The XRD analysis showed the formation of the cubic perovskite BaSnO3 as a major phase
and Ba2SnO4 as a secondary phase. The content of tetragonal secondary phase of
Ba2SnO4 was approximately the same in all samples. This confirmed that presence
of Sb did not influence the forming of Ba2SnO4. Ionic radius of Sb3+ (0.076 nm) is
larger than ionic radius of Sn4+ (0.069 nm), and it incorporation by lattice leads to
the increase of lattice parameter [4]. The cubic lattice parameter a was estimated to
be 0.41287(9), 0.41301(9), 0.41321(9) and 0.41302(4) nm for x =0.04, 0.06, 0.08 and
0.1, respectively. The relative densities were 95.2 %, 84.2 %, 85.9 % and 79.2 %
for x =0.04, 0.06, 0.08 and 0.1, respectively The SEM images of the fractured
surfaces of the obtained ceramics revealed that all samples were well-densified,
with the trend of reducing a grain size with increasing of Sb concentration. The
AFM images showed the existence of various particles shapes, with the particle
size of around 36 nm.

References:
[1] M Hiroshi et al, Chemistry of Materials 25 (19) (2013), 3858.
[2] Y Masahiro et al, Materials Science and Engineering B 173 (2010), 29.
[3] L Wenzhong et al, Sensors and Actuators 80 (2000), 35.
[4] Y Daisuke et al, Materials Science and Engineering B 173 (2010), 33.
[5] The authors would like to acknowledge the financial support of the Ministry of
Education, Science and Technological Development of the Republic of Serbia,
project III 45007.",
publisher = "Belgrade : Serbian Academy of Sciences and Arts",
journal = "1st International Conference: „Electron Microscopy of Nanostructures“, ELMINA, 2018 Conference, August 27-29, 2018, Belgrade, Serbia",
title = "Improvement of density and influence of Sb doping on structural properties of perovskite BaSnO3",
pages = "167-166",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2035"
}
Vukašinović, J., Počuča-Nešić, M., Luković Golić, D., Savic, S., Branković, Z., Tasić, N., Dapčević, A., Bernik, S., Kocen, M.,& Branković, G.. (2018). Improvement of density and influence of Sb doping on structural properties of perovskite BaSnO3. in 1st International Conference: „Electron Microscopy of Nanostructures“, ELMINA, 2018 Conference, August 27-29, 2018, Belgrade, Serbia
Belgrade : Serbian Academy of Sciences and Arts., 166-167.
https://hdl.handle.net/21.15107/rcub_rimsi_2035
Vukašinović J, Počuča-Nešić M, Luković Golić D, Savic S, Branković Z, Tasić N, Dapčević A, Bernik S, Kocen M, Branković G. Improvement of density and influence of Sb doping on structural properties of perovskite BaSnO3. in 1st International Conference: „Electron Microscopy of Nanostructures“, ELMINA, 2018 Conference, August 27-29, 2018, Belgrade, Serbia. 2018;:166-167.
https://hdl.handle.net/21.15107/rcub_rimsi_2035 .
Vukašinović, Jelena, Počuča-Nešić, Milica, Luković Golić, Danijela, Savic, Slavica, Branković, Zorica, Tasić, Nikola, Dapčević, Aleksandra, Bernik, Slavko, Kocen, Matej, Branković, Goran, "Improvement of density and influence of Sb doping on structural properties of perovskite BaSnO3" in 1st International Conference: „Electron Microscopy of Nanostructures“, ELMINA, 2018 Conference, August 27-29, 2018, Belgrade, Serbia (2018):166-167,
https://hdl.handle.net/21.15107/rcub_rimsi_2035 .