Pittman, Jon K.

Link to this page

Authority KeyName Variants
orcid::0000-0001-7197-1494
  • Pittman, Jon K. (3)
Projects

Author's Bibliography

Comparative impact of Mn2+ and Ni2+ on the microalga Chlorella sorokiniana

Vojvodić, Snežana; Stanić, Marina; Danilović Luković, Jelena; Milivojević, Marija; Zechmann, Bernd; Dimitrijević, Milena; Opačić, Miloš; Pittman, Jon K.; Spasojević, Ivan

(2022)

TY  - CONF
AU  - Vojvodić, Snežana
AU  - Stanić, Marina
AU  - Danilović Luković, Jelena
AU  - Milivojević, Marija
AU  - Zechmann, Bernd
AU  - Dimitrijević, Milena
AU  - Opačić, Miloš
AU  - Pittman, Jon K.
AU  - Spasojević, Ivan
PY  - 2022
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2403
AB  - METHODS
The impact of a set of concentrations of Mn2+ and Ni2+ on growth of C. sorokiniana culture in 3N-BBM+V
medium in the early stationary phase was evaluated by changes in optical density at 750 nm and biomass
during 7 days treatment. Mucilage release was analyzed using SEM microscopy. Redox settings were analyzed
by oxidation-sensitive fluorescent probe and assays for thiols.
RESULTS
Ni was more toxic than Mn and affected culture growth at lower concentrations. Microalgal cells started
releasing mucilage polymers within 1 h of exposure to 1 mM Mn2+, whereas no mucilage was observed even
at 24 h of treatment with equimolar Ni2+. The peak of reactive oxygen species production was reached faster
for Ni2+ than Mn2+. Mn-induced drops in the concentration of reduced thiols showed a recovery after 1 h and
24 h. Ni2+-induced drop was irreversible. The observed differences between the impact of Mn and Ni may be
related to different redox and coordinative properties and to higher capacities of microalgae to sequester Mn
in relation to higher quotas than Ni that are required for normal functio
C3  - FEMS Conference on Microbiology (in association with Serbian Society of Microbiology), Belgrade, Serbia.
T1  - Comparative impact of Mn2+ and Ni2+ on the microalga Chlorella sorokiniana
EP  - 748
SP  - 747
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2403
ER  - 
@conference{
author = "Vojvodić, Snežana and Stanić, Marina and Danilović Luković, Jelena and Milivojević, Marija and Zechmann, Bernd and Dimitrijević, Milena and Opačić, Miloš and Pittman, Jon K. and Spasojević, Ivan",
year = "2022",
abstract = "METHODS
The impact of a set of concentrations of Mn2+ and Ni2+ on growth of C. sorokiniana culture in 3N-BBM+V
medium in the early stationary phase was evaluated by changes in optical density at 750 nm and biomass
during 7 days treatment. Mucilage release was analyzed using SEM microscopy. Redox settings were analyzed
by oxidation-sensitive fluorescent probe and assays for thiols.
RESULTS
Ni was more toxic than Mn and affected culture growth at lower concentrations. Microalgal cells started
releasing mucilage polymers within 1 h of exposure to 1 mM Mn2+, whereas no mucilage was observed even
at 24 h of treatment with equimolar Ni2+. The peak of reactive oxygen species production was reached faster
for Ni2+ than Mn2+. Mn-induced drops in the concentration of reduced thiols showed a recovery after 1 h and
24 h. Ni2+-induced drop was irreversible. The observed differences between the impact of Mn and Ni may be
related to different redox and coordinative properties and to higher capacities of microalgae to sequester Mn
in relation to higher quotas than Ni that are required for normal functio",
journal = "FEMS Conference on Microbiology (in association with Serbian Society of Microbiology), Belgrade, Serbia.",
title = "Comparative impact of Mn2+ and Ni2+ on the microalga Chlorella sorokiniana",
pages = "748-747",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2403"
}
Vojvodić, S., Stanić, M., Danilović Luković, J., Milivojević, M., Zechmann, B., Dimitrijević, M., Opačić, M., Pittman, J. K.,& Spasojević, I.. (2022). Comparative impact of Mn2+ and Ni2+ on the microalga Chlorella sorokiniana. in FEMS Conference on Microbiology (in association with Serbian Society of Microbiology), Belgrade, Serbia., 747-748.
https://hdl.handle.net/21.15107/rcub_rimsi_2403
Vojvodić S, Stanić M, Danilović Luković J, Milivojević M, Zechmann B, Dimitrijević M, Opačić M, Pittman JK, Spasojević I. Comparative impact of Mn2+ and Ni2+ on the microalga Chlorella sorokiniana. in FEMS Conference on Microbiology (in association with Serbian Society of Microbiology), Belgrade, Serbia.. 2022;:747-748.
https://hdl.handle.net/21.15107/rcub_rimsi_2403 .
Vojvodić, Snežana, Stanić, Marina, Danilović Luković, Jelena, Milivojević, Marija, Zechmann, Bernd, Dimitrijević, Milena, Opačić, Miloš, Pittman, Jon K., Spasojević, Ivan, "Comparative impact of Mn2+ and Ni2+ on the microalga Chlorella sorokiniana" in FEMS Conference on Microbiology (in association with Serbian Society of Microbiology), Belgrade, Serbia. (2022):747-748,
https://hdl.handle.net/21.15107/rcub_rimsi_2403 .

Mechanisms of detoxification of high manganese concentrations by the microalga Chlorella sorokiniana

Vojvodić, Snežana; Stanić, Marina; Zechmann, Bernd; Dimitrijević, Milena; Opačić, Miloš; Danilović Luković, Jelena; Morina, Arian; Pittman, Jon K.; Spasojević, Ivan

(Elsevier, 2021)

TY  - CONF
AU  - Vojvodić, Snežana
AU  - Stanić, Marina
AU  - Zechmann, Bernd
AU  - Dimitrijević, Milena
AU  - Opačić, Miloš
AU  - Danilović Luković, Jelena
AU  - Morina, Arian
AU  - Pittman, Jon K.
AU  - Spasojević, Ivan
PY  - 2021
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2420
AB  - Many neutrophilic and acidophilic microalgal species tolerate high metal concentrations
and can survive or colonize metal-polluted waters. They show significant biotechnological
potential for the remediation and wastewaters processing. On the other hand, negative effects
of metal pollution on microalgae may affect the function of aquatic ecosystems because these
photosynthetic microorganisms represent the primary producers of O2 and biomass. However,
adaptive mechanisms that microalgae employ to detoxify metal excess are largely unknown.
Herein we analyzed the response of the freshwater microalga Chlorella sorokiniana to high
but non-toxic levels of Mn2+. Manganese is a key metal pollutant, with five possible oxidation
forms that can bind to a variety of different ligands. At pH below 7, it is predominantly present in
Mn2+ form. Scanning electron microscopy showed that in response to 1 mM Mn2+, C. sorokiniana
released mucilage polymers within 1 h. Electron paramagnetic resonance spectroscopy (EPR)
showed that the early response involved loose Mn2+ binding to mucilage and/or the cell wall.
The amount of loosely bound Mn2+ was significantly decreased after 24 h, whereas biomass
showed significant accumulation of Mn, O and P, as determined by energy dispersive X-ray
spectrometry, indicating the production of polyphosphates, which may sequester Mn. Further,
it was found that the exposure to Mn2+ resulted in rapid and transient decrease of total free
glutathione concentration; the drop was observed after 1 h, and the concentration returned to
initial values after 24 h. EPR measurements showed a similar trend in the level of reduced thiols.
The observed changes can be explained either by the synthesis of phytochelatins – sulfurrich
short-chain peptides that sequester metals, or by glutathionylation of proteins. Reduced
thiols could not be detected in the extracellular space, indicating that C. sorokiniana did not
release thiols in response to high Mn. These results demonstrate that the adaptive response
of C. sorokiniana to high Mn levels involves multiple components and time phases. The early
phase involves mucilage release, phytochelatins and/or protection of protein thiols, whereas
the successive phase involves Mn coordination by polyphosphates and other mechanisms that
remain to be resolved.
PB  - Elsevier
PB  - Society for Free Radical Research Europe (SFRR-E)
PB  - Ministry of Education, Science and Technological Development (Republic of Serbia)
PB  - Oxygen Club of California
C3  - Redox Biology in the 21st Century: A New Scientific Discipline, Meeting Abstracts
T1  - Mechanisms of detoxification of high manganese concentrations by the microalga Chlorella sorokiniana
EP  - 145
SP  - 145
DO  - 10.1016/j.freeradbiomed.2021.08.148
ER  - 
@conference{
author = "Vojvodić, Snežana and Stanić, Marina and Zechmann, Bernd and Dimitrijević, Milena and Opačić, Miloš and Danilović Luković, Jelena and Morina, Arian and Pittman, Jon K. and Spasojević, Ivan",
year = "2021",
abstract = "Many neutrophilic and acidophilic microalgal species tolerate high metal concentrations
and can survive or colonize metal-polluted waters. They show significant biotechnological
potential for the remediation and wastewaters processing. On the other hand, negative effects
of metal pollution on microalgae may affect the function of aquatic ecosystems because these
photosynthetic microorganisms represent the primary producers of O2 and biomass. However,
adaptive mechanisms that microalgae employ to detoxify metal excess are largely unknown.
Herein we analyzed the response of the freshwater microalga Chlorella sorokiniana to high
but non-toxic levels of Mn2+. Manganese is a key metal pollutant, with five possible oxidation
forms that can bind to a variety of different ligands. At pH below 7, it is predominantly present in
Mn2+ form. Scanning electron microscopy showed that in response to 1 mM Mn2+, C. sorokiniana
released mucilage polymers within 1 h. Electron paramagnetic resonance spectroscopy (EPR)
showed that the early response involved loose Mn2+ binding to mucilage and/or the cell wall.
The amount of loosely bound Mn2+ was significantly decreased after 24 h, whereas biomass
showed significant accumulation of Mn, O and P, as determined by energy dispersive X-ray
spectrometry, indicating the production of polyphosphates, which may sequester Mn. Further,
it was found that the exposure to Mn2+ resulted in rapid and transient decrease of total free
glutathione concentration; the drop was observed after 1 h, and the concentration returned to
initial values after 24 h. EPR measurements showed a similar trend in the level of reduced thiols.
The observed changes can be explained either by the synthesis of phytochelatins – sulfurrich
short-chain peptides that sequester metals, or by glutathionylation of proteins. Reduced
thiols could not be detected in the extracellular space, indicating that C. sorokiniana did not
release thiols in response to high Mn. These results demonstrate that the adaptive response
of C. sorokiniana to high Mn levels involves multiple components and time phases. The early
phase involves mucilage release, phytochelatins and/or protection of protein thiols, whereas
the successive phase involves Mn coordination by polyphosphates and other mechanisms that
remain to be resolved.",
publisher = "Elsevier, Society for Free Radical Research Europe (SFRR-E), Ministry of Education, Science and Technological Development (Republic of Serbia), Oxygen Club of California",
journal = "Redox Biology in the 21st Century: A New Scientific Discipline, Meeting Abstracts",
title = "Mechanisms of detoxification of high manganese concentrations by the microalga Chlorella sorokiniana",
pages = "145-145",
doi = "10.1016/j.freeradbiomed.2021.08.148"
}
Vojvodić, S., Stanić, M., Zechmann, B., Dimitrijević, M., Opačić, M., Danilović Luković, J., Morina, A., Pittman, J. K.,& Spasojević, I.. (2021). Mechanisms of detoxification of high manganese concentrations by the microalga Chlorella sorokiniana. in Redox Biology in the 21st Century: A New Scientific Discipline, Meeting Abstracts
Elsevier., 145-145.
https://doi.org/10.1016/j.freeradbiomed.2021.08.148
Vojvodić S, Stanić M, Zechmann B, Dimitrijević M, Opačić M, Danilović Luković J, Morina A, Pittman JK, Spasojević I. Mechanisms of detoxification of high manganese concentrations by the microalga Chlorella sorokiniana. in Redox Biology in the 21st Century: A New Scientific Discipline, Meeting Abstracts. 2021;:145-145.
doi:10.1016/j.freeradbiomed.2021.08.148 .
Vojvodić, Snežana, Stanić, Marina, Zechmann, Bernd, Dimitrijević, Milena, Opačić, Miloš, Danilović Luković, Jelena, Morina, Arian, Pittman, Jon K., Spasojević, Ivan, "Mechanisms of detoxification of high manganese concentrations by the microalga Chlorella sorokiniana" in Redox Biology in the 21st Century: A New Scientific Discipline, Meeting Abstracts (2021):145-145,
https://doi.org/10.1016/j.freeradbiomed.2021.08.148 . .

Mechanisms of detoxification of high copper concentrations by the microalga Chlorella sorokiniana

Vojvodić, Snežana; Stanić, Marina; Zechmann, Bernd; Ducic, Tanja; Žižić, Milan; Dimitrijević, Milena; Danilović Luković, Jelena; Milenković, Milica R.; Pittman, Jon K.; Spasojević, Ivan

(Portland Press Ltd, London, 2020)

TY  - JOUR
AU  - Vojvodić, Snežana
AU  - Stanić, Marina
AU  - Zechmann, Bernd
AU  - Ducic, Tanja
AU  - Žižić, Milan
AU  - Dimitrijević, Milena
AU  - Danilović Luković, Jelena
AU  - Milenković, Milica R.
AU  - Pittman, Jon K.
AU  - Spasojević, Ivan
PY  - 2020
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1354
AB  - Microalgae have evolved mechanisms to respond to changes in copper ion availability, which are very important for normal cellular function, to tolerate metal pollution of aquatic ecosystems, and for modulation of copper bioavailability and toxicity to other organisms. Knowledge and application of these mechanisms will benefit the use of microalgae in wastewater processing and biomass production, and the use of copper compounds in the suppression of harmful algal blooms. Here, using electron microscopy, synchrotron radiation-based Fourier transform infrared spectroscopy, electron paramagnetic resonance spectroscopy, and X-ray absorption fine structure spectroscopy, we show that the microalga Chlorella sorokiniana responds promptly to Cu2+ at high non-toxic concentration, by mucilage release, alterations in the architecture of the outer cell wall layer and lipid structures, and polyphosphate accumulation within mucilage matrix. The main route of copper detoxification is by Cu2+ coordination to polyphosphates in penta-coordinated geometry. The sequestrated Cu2+ was accessible and could be released by extracellular chelating agents. Finally, the reduction in Cu2+ to Cu1+ appears also to take place. These findings reveal the biochemical basis of the capacity of microalgae to adapt to high external copper concentrations and to serve as both, sinks and pools of environmental copper.
PB  - Portland Press Ltd, London
T2  - Biochemical Journal
T1  - Mechanisms of detoxification of high copper concentrations by the microalga Chlorella sorokiniana
EP  - 3741
IS  - 19
SP  - 3729
VL  - 477
DO  - 10.1042/BCJ20200600
ER  - 
@article{
author = "Vojvodić, Snežana and Stanić, Marina and Zechmann, Bernd and Ducic, Tanja and Žižić, Milan and Dimitrijević, Milena and Danilović Luković, Jelena and Milenković, Milica R. and Pittman, Jon K. and Spasojević, Ivan",
year = "2020",
abstract = "Microalgae have evolved mechanisms to respond to changes in copper ion availability, which are very important for normal cellular function, to tolerate metal pollution of aquatic ecosystems, and for modulation of copper bioavailability and toxicity to other organisms. Knowledge and application of these mechanisms will benefit the use of microalgae in wastewater processing and biomass production, and the use of copper compounds in the suppression of harmful algal blooms. Here, using electron microscopy, synchrotron radiation-based Fourier transform infrared spectroscopy, electron paramagnetic resonance spectroscopy, and X-ray absorption fine structure spectroscopy, we show that the microalga Chlorella sorokiniana responds promptly to Cu2+ at high non-toxic concentration, by mucilage release, alterations in the architecture of the outer cell wall layer and lipid structures, and polyphosphate accumulation within mucilage matrix. The main route of copper detoxification is by Cu2+ coordination to polyphosphates in penta-coordinated geometry. The sequestrated Cu2+ was accessible and could be released by extracellular chelating agents. Finally, the reduction in Cu2+ to Cu1+ appears also to take place. These findings reveal the biochemical basis of the capacity of microalgae to adapt to high external copper concentrations and to serve as both, sinks and pools of environmental copper.",
publisher = "Portland Press Ltd, London",
journal = "Biochemical Journal",
title = "Mechanisms of detoxification of high copper concentrations by the microalga Chlorella sorokiniana",
pages = "3741-3729",
number = "19",
volume = "477",
doi = "10.1042/BCJ20200600"
}
Vojvodić, S., Stanić, M., Zechmann, B., Ducic, T., Žižić, M., Dimitrijević, M., Danilović Luković, J., Milenković, M. R., Pittman, J. K.,& Spasojević, I.. (2020). Mechanisms of detoxification of high copper concentrations by the microalga Chlorella sorokiniana. in Biochemical Journal
Portland Press Ltd, London., 477(19), 3729-3741.
https://doi.org/10.1042/BCJ20200600
Vojvodić S, Stanić M, Zechmann B, Ducic T, Žižić M, Dimitrijević M, Danilović Luković J, Milenković MR, Pittman JK, Spasojević I. Mechanisms of detoxification of high copper concentrations by the microalga Chlorella sorokiniana. in Biochemical Journal. 2020;477(19):3729-3741.
doi:10.1042/BCJ20200600 .
Vojvodić, Snežana, Stanić, Marina, Zechmann, Bernd, Ducic, Tanja, Žižić, Milan, Dimitrijević, Milena, Danilović Luković, Jelena, Milenković, Milica R., Pittman, Jon K., Spasojević, Ivan, "Mechanisms of detoxification of high copper concentrations by the microalga Chlorella sorokiniana" in Biochemical Journal, 477, no. 19 (2020):3729-3741,
https://doi.org/10.1042/BCJ20200600 . .
3
9
4
9