RIMSI - Repository of Institute for Multidisciplinary Research
University of Belgrade - Institute for Multidisciplinary Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Platinum nanocatalysts on metal oxide based supports for low temperature fuel cell applications

Thumbnail
2016
988.pdf (622.2Kb)
Authors
Elezović, Nevenka R.
Radmilović, Velimir R
Krstajić, Nedeljko V
Article (Published version)
Metadata
Show full item record
Abstract
In this manuscript a survey of the contemporary research related to platinum nanocatalysts on metal oxide based supports for low temperature fuel cell applications is presented. Different carbon based supports, used as state of the art materials, are listed and discussed, as well. Although carbon based materials possess many desirable properties, such as high surface area, high conductivity and relatively low cost and easy synthesis, the large scale commercialization is limited by instability under accelerated stability testing, simulating real fuel cell operating conditions. To overcome these disadvantages of carbon supports, different metal oxide based ones have been studied and promising results are referenced. The most often used oxide based supports for low temperature fuel cell applications are presented in this review. Suitable discussion and future research related remarks are given, as well.
Keywords:
fuel cells / platinum / nanocatalysts / metal-oxide based supports / oxygen reduction
Source:
RSC Advances, 2016, 6, 8, 6788-6801
Publisher:
  • Royal Soc Chemistry, Cambridge
Funding / projects:
  • Development, characterization and application nanostructured and composite electrocatalysts and interactive supports for fuel cells and water electrolysis (RS-172054)
  • Office of Science, Office of Basic Energy Sciences, of the U.S. Department of EnergyUnited States Department of Energy (DOE) [DE-AC02-05CH11231]

DOI: 10.1039/C5RA22403A

ISSN: 2046-2069

WoS: 000368858000095

Scopus: 2-s2.0-84955460819
[ Google Scholar ]
67
32
URI
http://rimsi.imsi.bg.ac.rs/handle/123456789/991
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za multidisciplinarna istraživanja
TY  - JOUR
AU  - Elezović, Nevenka R.
AU  - Radmilović, Velimir R
AU  - Krstajić, Nedeljko V
PY  - 2016
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/991
AB  - In this manuscript a survey of the contemporary research related to platinum nanocatalysts on metal oxide based supports for low temperature fuel cell applications is presented. Different carbon based supports, used as state of the art materials, are listed and discussed, as well. Although carbon based materials possess many desirable properties, such as high surface area, high conductivity and relatively low cost and easy synthesis, the large scale commercialization is limited by instability under accelerated stability testing, simulating real fuel cell operating conditions. To overcome these disadvantages of carbon supports, different metal oxide based ones have been studied and promising results are referenced. The most often used oxide based supports for low temperature fuel cell applications are presented in this review. Suitable discussion and future research related remarks are given, as well.
PB  - Royal Soc Chemistry, Cambridge
T2  - RSC Advances
T1  - Platinum nanocatalysts on metal oxide based supports for low temperature fuel cell applications
EP  - 6801
IS  - 8
SP  - 6788
VL  - 6
DO  - 10.1039/C5RA22403A
ER  - 
@article{
author = "Elezović, Nevenka R. and Radmilović, Velimir R and Krstajić, Nedeljko V",
year = "2016",
abstract = "In this manuscript a survey of the contemporary research related to platinum nanocatalysts on metal oxide based supports for low temperature fuel cell applications is presented. Different carbon based supports, used as state of the art materials, are listed and discussed, as well. Although carbon based materials possess many desirable properties, such as high surface area, high conductivity and relatively low cost and easy synthesis, the large scale commercialization is limited by instability under accelerated stability testing, simulating real fuel cell operating conditions. To overcome these disadvantages of carbon supports, different metal oxide based ones have been studied and promising results are referenced. The most often used oxide based supports for low temperature fuel cell applications are presented in this review. Suitable discussion and future research related remarks are given, as well.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "RSC Advances",
title = "Platinum nanocatalysts on metal oxide based supports for low temperature fuel cell applications",
pages = "6801-6788",
number = "8",
volume = "6",
doi = "10.1039/C5RA22403A"
}
Elezović, N. R., Radmilović, V. R.,& Krstajić, N. V.. (2016). Platinum nanocatalysts on metal oxide based supports for low temperature fuel cell applications. in RSC Advances
Royal Soc Chemistry, Cambridge., 6(8), 6788-6801.
https://doi.org/10.1039/C5RA22403A
Elezović NR, Radmilović VR, Krstajić NV. Platinum nanocatalysts on metal oxide based supports for low temperature fuel cell applications. in RSC Advances. 2016;6(8):6788-6801.
doi:10.1039/C5RA22403A .
Elezović, Nevenka R., Radmilović, Velimir R, Krstajić, Nedeljko V, "Platinum nanocatalysts on metal oxide based supports for low temperature fuel cell applications" in RSC Advances, 6, no. 8 (2016):6788-6801,
https://doi.org/10.1039/C5RA22403A . .

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB