RIMSI - Repository of Institute for Multidisciplinary Research
University of Belgrade - Institute for Multidisciplinary Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lignin model compound in alginate hydrogel: a strong antimicrobial agent with high potential in wound treatment

Authorized Users Only
2016
Authors
Spasojević, Dragica
Zmejkoski, Danica
Glamočlija, Jasmina
Nikolic, Milos
Soković, Marina
Milošević, Verica Lj.
Jaric, Ivana
Stojanović, Marijana
Marinković, Emilija
Barisani-Asenbauer, Talin
Prodanović, Radivoje
Jovanović, Milos
Radotić, Ksenija
Article (Published version)
Metadata
Show full item record
Abstract
Nowadays bacterial resistance to known antibiotics is a serious health problem. In order to achieve more efficient treatment, lately there is an effort to find new substances, such as certain biomaterials, that are non-toxic to humans with antibiotic potential. Lignins and lignin-derived compounds have been proposed to be good candidates for use in medicine and health maintenance. In this study, the antibacterial activity of the lignin model polymer dehydrogenate polymer (DHP) in alginate hydrogel (Alg) was studied. The obtained results show that DHP-Alg has strong antimicrobial activity against several bacterial strains and biofilms and does not have a toxic effect on human epithelial cells. These results strongly suggest its application as a wound healing agent or as an adjunct substance for wound treatments.
Keywords:
Wound treatment / Lignin model polymer / Bacterial biofilm / Antimicrobial activity / Alginate
Source:
International Journal of Antimicrobial Agents, 2016, 48, 6, 732-735
Publisher:
  • Elsevier, Amsterdam
Funding / projects:
  • Synthesis, processing and characterization of nanostructured materials for application in the field of energy, mechanical engineering, environmental protection and biomedicine (RS-45012)
  • Study of structure-function relationships in the plant cell wall and modifications of the wall structure by enzyme engineering (RS-173017)
  • Characterization and application of fungal metabolites and assessment of new biofungicides potential (RS-173032)
  • Allergens, antibodies, enzymes and small physiologically important molecules: design, structure, function and relevance (RS-172049)

DOI: 10.1016/j.ijantimicag.2016.08.014

ISSN: 0924-8579

PubMed: 27742207

WoS: 000389520700024

Scopus: 2-s2.0-85000995852
[ Google Scholar ]
28
21
URI
http://rimsi.imsi.bg.ac.rs/handle/123456789/983
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za multidisciplinarna istraživanja
TY  - JOUR
AU  - Spasojević, Dragica
AU  - Zmejkoski, Danica
AU  - Glamočlija, Jasmina
AU  - Nikolic, Milos
AU  - Soković, Marina
AU  - Milošević, Verica Lj.
AU  - Jaric, Ivana
AU  - Stojanović, Marijana
AU  - Marinković, Emilija
AU  - Barisani-Asenbauer, Talin
AU  - Prodanović, Radivoje
AU  - Jovanović, Milos
AU  - Radotić, Ksenija
PY  - 2016
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/983
AB  - Nowadays bacterial resistance to known antibiotics is a serious health problem. In order to achieve more efficient treatment, lately there is an effort to find new substances, such as certain biomaterials, that are non-toxic to humans with antibiotic potential. Lignins and lignin-derived compounds have been proposed to be good candidates for use in medicine and health maintenance. In this study, the antibacterial activity of the lignin model polymer dehydrogenate polymer (DHP) in alginate hydrogel (Alg) was studied. The obtained results show that DHP-Alg has strong antimicrobial activity against several bacterial strains and biofilms and does not have a toxic effect on human epithelial cells. These results strongly suggest its application as a wound healing agent or as an adjunct substance for wound treatments.
PB  - Elsevier, Amsterdam
T2  - International Journal of Antimicrobial Agents
T1  - Lignin model compound in alginate hydrogel: a strong antimicrobial agent with high potential in wound treatment
EP  - 735
IS  - 6
SP  - 732
VL  - 48
DO  - 10.1016/j.ijantimicag.2016.08.014
ER  - 
@article{
author = "Spasojević, Dragica and Zmejkoski, Danica and Glamočlija, Jasmina and Nikolic, Milos and Soković, Marina and Milošević, Verica Lj. and Jaric, Ivana and Stojanović, Marijana and Marinković, Emilija and Barisani-Asenbauer, Talin and Prodanović, Radivoje and Jovanović, Milos and Radotić, Ksenija",
year = "2016",
abstract = "Nowadays bacterial resistance to known antibiotics is a serious health problem. In order to achieve more efficient treatment, lately there is an effort to find new substances, such as certain biomaterials, that are non-toxic to humans with antibiotic potential. Lignins and lignin-derived compounds have been proposed to be good candidates for use in medicine and health maintenance. In this study, the antibacterial activity of the lignin model polymer dehydrogenate polymer (DHP) in alginate hydrogel (Alg) was studied. The obtained results show that DHP-Alg has strong antimicrobial activity against several bacterial strains and biofilms and does not have a toxic effect on human epithelial cells. These results strongly suggest its application as a wound healing agent or as an adjunct substance for wound treatments.",
publisher = "Elsevier, Amsterdam",
journal = "International Journal of Antimicrobial Agents",
title = "Lignin model compound in alginate hydrogel: a strong antimicrobial agent with high potential in wound treatment",
pages = "735-732",
number = "6",
volume = "48",
doi = "10.1016/j.ijantimicag.2016.08.014"
}
Spasojević, D., Zmejkoski, D., Glamočlija, J., Nikolic, M., Soković, M., Milošević, V. Lj., Jaric, I., Stojanović, M., Marinković, E., Barisani-Asenbauer, T., Prodanović, R., Jovanović, M.,& Radotić, K.. (2016). Lignin model compound in alginate hydrogel: a strong antimicrobial agent with high potential in wound treatment. in International Journal of Antimicrobial Agents
Elsevier, Amsterdam., 48(6), 732-735.
https://doi.org/10.1016/j.ijantimicag.2016.08.014
Spasojević D, Zmejkoski D, Glamočlija J, Nikolic M, Soković M, Milošević VL, Jaric I, Stojanović M, Marinković E, Barisani-Asenbauer T, Prodanović R, Jovanović M, Radotić K. Lignin model compound in alginate hydrogel: a strong antimicrobial agent with high potential in wound treatment. in International Journal of Antimicrobial Agents. 2016;48(6):732-735.
doi:10.1016/j.ijantimicag.2016.08.014 .
Spasojević, Dragica, Zmejkoski, Danica, Glamočlija, Jasmina, Nikolic, Milos, Soković, Marina, Milošević, Verica Lj., Jaric, Ivana, Stojanović, Marijana, Marinković, Emilija, Barisani-Asenbauer, Talin, Prodanović, Radivoje, Jovanović, Milos, Radotić, Ksenija, "Lignin model compound in alginate hydrogel: a strong antimicrobial agent with high potential in wound treatment" in International Journal of Antimicrobial Agents, 48, no. 6 (2016):732-735,
https://doi.org/10.1016/j.ijantimicag.2016.08.014 . .

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB