RIMSI - Repository of Institute for Multidisciplinary Research
University of Belgrade - Institute for Multidisciplinary Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ni-(Ebonex-supported Ir) composite coatings as electrocatalysts for alkaline water electrolysis. Part I: Hydrogen evolution

Authorized Users Only
2015
Authors
Jović, Borka M
Jović, Vladimir D
Lačnjevac, Uroš
Gajić-Krstajić, Ljiljana M
Krstajić, Nedeljko V
Article (Published version)
Metadata
Show full item record
Abstract
The hydrogen evolution reaction (HER) was studied at electrodeposited Ni and Ni-(Ebonex/Ir) composite coatings in 1 mol dm(-3) NaOH solution at 25 degrees C. The Ni-(Ebonex/Ir) coatings were electrodeposited from a nickel Watts type bath containing different amounts of suspended Ebonex/Ir(30 wt.%) powder particles (0-2 g dm(-3)) onto a Ni 40 mesh substrate. The electrodes were investigated by cyclic voltammetry (CV), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), electrochemical impedance spectroscopy (EIS) and polarization measurements. It was shown that the roughness factor of coatings increased to a maximum value of 27 with increasing the concentration of Ebonex/Ir particles in the deposition bath, while that of a pure Ni coating was found to be 3.2. In the whole potential range of the HER only one Tafel slope of about -120 mV dec(-1) was observed at all polarization curves. Considerably improved intrinsic catalytic activity for the HER compared to p...ure Ni was achieved with the composite coating deposited from the bath with the lowest concentration of Ebonex/Ir particles (0.1 g dm(-3)). Further enhancement of the apparent catalytic activity for the HER of Ni-(Ebonex/Ir) composite coatings obtained at higher concentrations of suspended Ebonex/Ir particles in the bath was attributed only to the increase of their electrochemically active surface area.

Keywords:
Ni composite coatings / Ir catalyst / Intrinsic activity / H-2 evolution / Alkaline solution
Source:
International Journal of Hydrogen Energy, 2015, 40, 33, 10480-10490
Publisher:
  • Pergamon-Elsevier Science Ltd, Oxford
Funding / projects:
  • Development, characterization and application nanostructured and composite electrocatalysts and interactive supports for fuel cells and water electrolysis (RS-172054)

DOI: 10.1016/j.ijhydene.2015.06.127

ISSN: 0360-3199

WoS: 000359170400011

Scopus: 2-s2.0-84938199080
[ Google Scholar ]
19
17
URI
http://rimsi.imsi.bg.ac.rs/handle/123456789/866
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za multidisciplinarna istraživanja
TY  - JOUR
AU  - Jović, Borka M
AU  - Jović, Vladimir D
AU  - Lačnjevac, Uroš
AU  - Gajić-Krstajić, Ljiljana M
AU  - Krstajić, Nedeljko V
PY  - 2015
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/866
AB  - The hydrogen evolution reaction (HER) was studied at electrodeposited Ni and Ni-(Ebonex/Ir) composite coatings in 1 mol dm(-3) NaOH solution at 25 degrees C. The Ni-(Ebonex/Ir) coatings were electrodeposited from a nickel Watts type bath containing different amounts of suspended Ebonex/Ir(30 wt.%) powder particles (0-2 g dm(-3)) onto a Ni 40 mesh substrate. The electrodes were investigated by cyclic voltammetry (CV), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), electrochemical impedance spectroscopy (EIS) and polarization measurements. It was shown that the roughness factor of coatings increased to a maximum value of 27 with increasing the concentration of Ebonex/Ir particles in the deposition bath, while that of a pure Ni coating was found to be 3.2. In the whole potential range of the HER only one Tafel slope of about -120 mV dec(-1) was observed at all polarization curves. Considerably improved intrinsic catalytic activity for the HER compared to pure Ni was achieved with the composite coating deposited from the bath with the lowest concentration of Ebonex/Ir particles (0.1 g dm(-3)). Further enhancement of the apparent catalytic activity for the HER of Ni-(Ebonex/Ir) composite coatings obtained at higher concentrations of suspended Ebonex/Ir particles in the bath was attributed only to the increase of their electrochemically active surface area.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - International Journal of Hydrogen Energy
T1  - Ni-(Ebonex-supported Ir) composite coatings as electrocatalysts for alkaline water electrolysis. Part I: Hydrogen evolution
EP  - 10490
IS  - 33
SP  - 10480
VL  - 40
DO  - 10.1016/j.ijhydene.2015.06.127
ER  - 
@article{
author = "Jović, Borka M and Jović, Vladimir D and Lačnjevac, Uroš and Gajić-Krstajić, Ljiljana M and Krstajić, Nedeljko V",
year = "2015",
abstract = "The hydrogen evolution reaction (HER) was studied at electrodeposited Ni and Ni-(Ebonex/Ir) composite coatings in 1 mol dm(-3) NaOH solution at 25 degrees C. The Ni-(Ebonex/Ir) coatings were electrodeposited from a nickel Watts type bath containing different amounts of suspended Ebonex/Ir(30 wt.%) powder particles (0-2 g dm(-3)) onto a Ni 40 mesh substrate. The electrodes were investigated by cyclic voltammetry (CV), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), electrochemical impedance spectroscopy (EIS) and polarization measurements. It was shown that the roughness factor of coatings increased to a maximum value of 27 with increasing the concentration of Ebonex/Ir particles in the deposition bath, while that of a pure Ni coating was found to be 3.2. In the whole potential range of the HER only one Tafel slope of about -120 mV dec(-1) was observed at all polarization curves. Considerably improved intrinsic catalytic activity for the HER compared to pure Ni was achieved with the composite coating deposited from the bath with the lowest concentration of Ebonex/Ir particles (0.1 g dm(-3)). Further enhancement of the apparent catalytic activity for the HER of Ni-(Ebonex/Ir) composite coatings obtained at higher concentrations of suspended Ebonex/Ir particles in the bath was attributed only to the increase of their electrochemically active surface area.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "International Journal of Hydrogen Energy",
title = "Ni-(Ebonex-supported Ir) composite coatings as electrocatalysts for alkaline water electrolysis. Part I: Hydrogen evolution",
pages = "10490-10480",
number = "33",
volume = "40",
doi = "10.1016/j.ijhydene.2015.06.127"
}
Jović, B. M., Jović, V. D., Lačnjevac, U., Gajić-Krstajić, L. M.,& Krstajić, N. V.. (2015). Ni-(Ebonex-supported Ir) composite coatings as electrocatalysts for alkaline water electrolysis. Part I: Hydrogen evolution. in International Journal of Hydrogen Energy
Pergamon-Elsevier Science Ltd, Oxford., 40(33), 10480-10490.
https://doi.org/10.1016/j.ijhydene.2015.06.127
Jović BM, Jović VD, Lačnjevac U, Gajić-Krstajić LM, Krstajić NV. Ni-(Ebonex-supported Ir) composite coatings as electrocatalysts for alkaline water electrolysis. Part I: Hydrogen evolution. in International Journal of Hydrogen Energy. 2015;40(33):10480-10490.
doi:10.1016/j.ijhydene.2015.06.127 .
Jović, Borka M, Jović, Vladimir D, Lačnjevac, Uroš, Gajić-Krstajić, Ljiljana M, Krstajić, Nedeljko V, "Ni-(Ebonex-supported Ir) composite coatings as electrocatalysts for alkaline water electrolysis. Part I: Hydrogen evolution" in International Journal of Hydrogen Energy, 40, no. 33 (2015):10480-10490,
https://doi.org/10.1016/j.ijhydene.2015.06.127 . .

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB