RIMSI - Repository of Institute for Multidisciplinary Research
University of Belgrade - Institute for Multidisciplinary Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Novel Pt catalyst on ruthenium doped TiO2 support for oxygen reduction reaction

Authorized Users Only
2013
Authors
Elezović, Nevenka R.
Babić, Biljana M.
Radmilović, Velimir R
Vračar, Ljiljana M
Krstajić, Nedeljko V
Article (Published version)
Metadata
Show full item record
Abstract
Ruthenium doped titanium oxide support was synthesized. The support was characterized by BET (Brunauer, Emmett, Teller) and X-ray diffraction techniques (XRD). Determined specific surface area was 41 m(2) g(-1). XRD revealed presence mainly TiO2 anatase phase and some peaks belonging to rutile phase. No Ru compounds have been detected. Platinum based catalyst on this support was prepared by borohydride reduction method. The catalyst was characterized by scanning transmission electron microscopy (STEM, HAADF) and electron energy loss spectroscopy (EELS). Homogenous Pt particle distribution over the support, with average Pt nanoparticle diameter of 3 nm was found. This novel catalyst was tested for oxygen reduction in acid solution. It exhibited remarkable higher catalytic activity in comparison with Pt/C, as well as with Pt nanocatalysts at titanium oxide based supports, reported in literature.
Keywords:
Titanium oxide based support / Pt/RuTiO2 catalyst / Oxygen reduction reaction / Acid solution
Source:
Applied Catalysis B-Environmental, 2013, 140, 206-212
Publisher:
  • Elsevier, Amsterdam
Funding / projects:
  • Development, characterization and application nanostructured and composite electrocatalysts and interactive supports for fuel cells and water electrolysis (RS-172054)
  • Office of Science, Office of Basic Energy Sciences, of the U.S. Department of EnergyUnited States Department of Energy (DOE) [DE-AC02-05CH11231]
  • Nanotechnology and Functional Materials Center
  • Reinforcing of Nanotechnology and Functional Materials Centre (EU-245916)
  • Serbian Academy of Sciences and Arts

DOI: 10.1016/j.apcatb.2013.04.012

ISSN: 0926-3373

WoS: 000321991300024

Scopus: 2-s2.0-84877047260
[ Google Scholar ]
16
13
URI
http://rimsi.imsi.bg.ac.rs/handle/123456789/716
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za multidisciplinarna istraživanja
TY  - JOUR
AU  - Elezović, Nevenka R.
AU  - Babić, Biljana M.
AU  - Radmilović, Velimir R
AU  - Vračar, Ljiljana M
AU  - Krstajić, Nedeljko V
PY  - 2013
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/716
AB  - Ruthenium doped titanium oxide support was synthesized. The support was characterized by BET (Brunauer, Emmett, Teller) and X-ray diffraction techniques (XRD). Determined specific surface area was 41 m(2) g(-1). XRD revealed presence mainly TiO2 anatase phase and some peaks belonging to rutile phase. No Ru compounds have been detected. Platinum based catalyst on this support was prepared by borohydride reduction method. The catalyst was characterized by scanning transmission electron microscopy (STEM, HAADF) and electron energy loss spectroscopy (EELS). Homogenous Pt particle distribution over the support, with average Pt nanoparticle diameter of 3 nm was found. This novel catalyst was tested for oxygen reduction in acid solution. It exhibited remarkable higher catalytic activity in comparison with Pt/C, as well as with Pt nanocatalysts at titanium oxide based supports, reported in literature.
PB  - Elsevier, Amsterdam
T2  - Applied Catalysis B-Environmental
T1  - Novel Pt catalyst on ruthenium doped TiO2 support for oxygen reduction reaction
EP  - 212
SP  - 206
VL  - 140
DO  - 10.1016/j.apcatb.2013.04.012
ER  - 
@article{
author = "Elezović, Nevenka R. and Babić, Biljana M. and Radmilović, Velimir R and Vračar, Ljiljana M and Krstajić, Nedeljko V",
year = "2013",
abstract = "Ruthenium doped titanium oxide support was synthesized. The support was characterized by BET (Brunauer, Emmett, Teller) and X-ray diffraction techniques (XRD). Determined specific surface area was 41 m(2) g(-1). XRD revealed presence mainly TiO2 anatase phase and some peaks belonging to rutile phase. No Ru compounds have been detected. Platinum based catalyst on this support was prepared by borohydride reduction method. The catalyst was characterized by scanning transmission electron microscopy (STEM, HAADF) and electron energy loss spectroscopy (EELS). Homogenous Pt particle distribution over the support, with average Pt nanoparticle diameter of 3 nm was found. This novel catalyst was tested for oxygen reduction in acid solution. It exhibited remarkable higher catalytic activity in comparison with Pt/C, as well as with Pt nanocatalysts at titanium oxide based supports, reported in literature.",
publisher = "Elsevier, Amsterdam",
journal = "Applied Catalysis B-Environmental",
title = "Novel Pt catalyst on ruthenium doped TiO2 support for oxygen reduction reaction",
pages = "212-206",
volume = "140",
doi = "10.1016/j.apcatb.2013.04.012"
}
Elezović, N. R., Babić, B. M., Radmilović, V. R., Vračar, L. M.,& Krstajić, N. V.. (2013). Novel Pt catalyst on ruthenium doped TiO2 support for oxygen reduction reaction. in Applied Catalysis B-Environmental
Elsevier, Amsterdam., 140, 206-212.
https://doi.org/10.1016/j.apcatb.2013.04.012
Elezović NR, Babić BM, Radmilović VR, Vračar LM, Krstajić NV. Novel Pt catalyst on ruthenium doped TiO2 support for oxygen reduction reaction. in Applied Catalysis B-Environmental. 2013;140:206-212.
doi:10.1016/j.apcatb.2013.04.012 .
Elezović, Nevenka R., Babić, Biljana M., Radmilović, Velimir R, Vračar, Ljiljana M, Krstajić, Nedeljko V, "Novel Pt catalyst on ruthenium doped TiO2 support for oxygen reduction reaction" in Applied Catalysis B-Environmental, 140 (2013):206-212,
https://doi.org/10.1016/j.apcatb.2013.04.012 . .

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB