Electrochemical oxidation of methanol on Pt/(RuxSn1-x)O-2 nanocatalyst

2013
Authors
Krstajic, Mila N
Obradović, Maja D

Babić, Biljana M.
Radmilović, Velimir R
Lačnjevac, Uroš

Krstajić, Nedeljko V
Gojković, Snežana Lj
Article (Published version)
Metadata
Show full item recordAbstract
Ru-doped SnO2 powder, (RuxSn1-x)O-2, with a Sn:Ru atomic ratio of 9:1 was synthesized and used as a support for Pt nanoparticles (30 mass % loading). The (RuxSn1-x)O-2 support and the Pt/(RuxSn1-x)O-2 catalyst were characterized by X-ray diffraction measurements, energy dispersive X-ray spectroscopy and transmission electron microscopy (TEM). The (RuxSn1-x)O-2 was found to be a two-phase material consisting of probably a solid solution of RuO2 in SnO2 and pure RuO2. The average Pt particle size determined by TEM was 5.3 nm. Cyclic voltammetry of Pt/(RuxSn1-x)O-2 indicated good conductivity of the support and displayed the usual features of Pt. The results of the electrochemical oxidation of COad, and methanol on Pt/(RuxSn1-x)O-2 were compared with those on commercial Pt/C and PtRu/C catalysts. Oxidation of COads on Pt/(RuxSn1-x)O-2 starts at lower positive potentials than on PtRu/C and Pt/C. Potentiodynamic polarization curves and chronoamperometric curves of methanol oxidation indicat...ed higher initial activity of the Pt/(RuxSn1-x)O-2 catalyst compared to PtRu/C, but also a greater loss in current density over time. A potentiodynamic stability test of the catalysts revealed that deactivation of Pt/(RuxSn1-x)O-2 and Pt/C was primarily caused by poisoning of the Pt surface by residues of methanol oxidation, which mostly occurred during the first potential cycle. In the case of PtRu/C, the poisoning of the surface was minor and deactivation was caused by surface area loss of the PtRu.
Keywords:
Ru-doped SnO2 / platinum / methanol oxidation / fuel cell / electrocatalysis / CO oxidationSource:
Journal of the Serbian Chemical Society, 2013, 78, 11, 1703-1716Publisher:
- Srpsko hemijsko društvo, Beograd
Funding / projects:
DOI: 10.2298/JSC130718091K
ISSN: 0352-5139
WoS: 000329265400007
Scopus: 2-s2.0-84888124242
Collections
Institution/Community
Institut za multidisciplinarna istraživanjaTY - JOUR AU - Krstajic, Mila N AU - Obradović, Maja D AU - Babić, Biljana M. AU - Radmilović, Velimir R AU - Lačnjevac, Uroš AU - Krstajić, Nedeljko V AU - Gojković, Snežana Lj PY - 2013 UR - http://rimsi.imsi.bg.ac.rs/handle/123456789/640 AB - Ru-doped SnO2 powder, (RuxSn1-x)O-2, with a Sn:Ru atomic ratio of 9:1 was synthesized and used as a support for Pt nanoparticles (30 mass % loading). The (RuxSn1-x)O-2 support and the Pt/(RuxSn1-x)O-2 catalyst were characterized by X-ray diffraction measurements, energy dispersive X-ray spectroscopy and transmission electron microscopy (TEM). The (RuxSn1-x)O-2 was found to be a two-phase material consisting of probably a solid solution of RuO2 in SnO2 and pure RuO2. The average Pt particle size determined by TEM was 5.3 nm. Cyclic voltammetry of Pt/(RuxSn1-x)O-2 indicated good conductivity of the support and displayed the usual features of Pt. The results of the electrochemical oxidation of COad, and methanol on Pt/(RuxSn1-x)O-2 were compared with those on commercial Pt/C and PtRu/C catalysts. Oxidation of COads on Pt/(RuxSn1-x)O-2 starts at lower positive potentials than on PtRu/C and Pt/C. Potentiodynamic polarization curves and chronoamperometric curves of methanol oxidation indicated higher initial activity of the Pt/(RuxSn1-x)O-2 catalyst compared to PtRu/C, but also a greater loss in current density over time. A potentiodynamic stability test of the catalysts revealed that deactivation of Pt/(RuxSn1-x)O-2 and Pt/C was primarily caused by poisoning of the Pt surface by residues of methanol oxidation, which mostly occurred during the first potential cycle. In the case of PtRu/C, the poisoning of the surface was minor and deactivation was caused by surface area loss of the PtRu. PB - Srpsko hemijsko društvo, Beograd T2 - Journal of the Serbian Chemical Society T1 - Electrochemical oxidation of methanol on Pt/(RuxSn1-x)O-2 nanocatalyst EP - 1716 IS - 11 SP - 1703 VL - 78 DO - 10.2298/JSC130718091K ER -
@article{ author = "Krstajic, Mila N and Obradović, Maja D and Babić, Biljana M. and Radmilović, Velimir R and Lačnjevac, Uroš and Krstajić, Nedeljko V and Gojković, Snežana Lj", year = "2013", abstract = "Ru-doped SnO2 powder, (RuxSn1-x)O-2, with a Sn:Ru atomic ratio of 9:1 was synthesized and used as a support for Pt nanoparticles (30 mass % loading). The (RuxSn1-x)O-2 support and the Pt/(RuxSn1-x)O-2 catalyst were characterized by X-ray diffraction measurements, energy dispersive X-ray spectroscopy and transmission electron microscopy (TEM). The (RuxSn1-x)O-2 was found to be a two-phase material consisting of probably a solid solution of RuO2 in SnO2 and pure RuO2. The average Pt particle size determined by TEM was 5.3 nm. Cyclic voltammetry of Pt/(RuxSn1-x)O-2 indicated good conductivity of the support and displayed the usual features of Pt. The results of the electrochemical oxidation of COad, and methanol on Pt/(RuxSn1-x)O-2 were compared with those on commercial Pt/C and PtRu/C catalysts. Oxidation of COads on Pt/(RuxSn1-x)O-2 starts at lower positive potentials than on PtRu/C and Pt/C. Potentiodynamic polarization curves and chronoamperometric curves of methanol oxidation indicated higher initial activity of the Pt/(RuxSn1-x)O-2 catalyst compared to PtRu/C, but also a greater loss in current density over time. A potentiodynamic stability test of the catalysts revealed that deactivation of Pt/(RuxSn1-x)O-2 and Pt/C was primarily caused by poisoning of the Pt surface by residues of methanol oxidation, which mostly occurred during the first potential cycle. In the case of PtRu/C, the poisoning of the surface was minor and deactivation was caused by surface area loss of the PtRu.", publisher = "Srpsko hemijsko društvo, Beograd", journal = "Journal of the Serbian Chemical Society", title = "Electrochemical oxidation of methanol on Pt/(RuxSn1-x)O-2 nanocatalyst", pages = "1716-1703", number = "11", volume = "78", doi = "10.2298/JSC130718091K" }
Krstajic, M. N., Obradović, M. D., Babić, B. M., Radmilović, V. R., Lačnjevac, U., Krstajić, N. V.,& Gojković, S. L.. (2013). Electrochemical oxidation of methanol on Pt/(RuxSn1-x)O-2 nanocatalyst. in Journal of the Serbian Chemical Society Srpsko hemijsko društvo, Beograd., 78(11), 1703-1716. https://doi.org/10.2298/JSC130718091K
Krstajic MN, Obradović MD, Babić BM, Radmilović VR, Lačnjevac U, Krstajić NV, Gojković SL. Electrochemical oxidation of methanol on Pt/(RuxSn1-x)O-2 nanocatalyst. in Journal of the Serbian Chemical Society. 2013;78(11):1703-1716. doi:10.2298/JSC130718091K .
Krstajic, Mila N, Obradović, Maja D, Babić, Biljana M., Radmilović, Velimir R, Lačnjevac, Uroš, Krstajić, Nedeljko V, Gojković, Snežana Lj, "Electrochemical oxidation of methanol on Pt/(RuxSn1-x)O-2 nanocatalyst" in Journal of the Serbian Chemical Society, 78, no. 11 (2013):1703-1716, https://doi.org/10.2298/JSC130718091K . .