Приказ основних података о документу

dc.creatorNikolic, Miroslav
dc.creatorCesco, Stefano
dc.creatorMonte, Rossella
dc.creatorTomasi, Nicola
dc.creatorGottardi, Stefano
dc.creatorZamboni, Anita
dc.creatorPinton, Roberto
dc.creatorVaranini, Zeno
dc.date.accessioned2022-04-05T14:36:23Z
dc.date.available2022-04-05T14:36:23Z
dc.date.issued2012
dc.identifier.issn1471-2229
dc.identifier.urihttp://rimsi.imsi.bg.ac.rs/handle/123456789/569
dc.description.abstractBackground: The mechanisms by which nitrate is transported into the roots have been characterized both at physiological and molecular levels. It has been demonstrated that nitrate is taken up in an energy-dependent way by a four-component uptake machinery involving high-and low-affinity transport systems. In contrast very little is known about the physiology of nitrate transport towards different plant tissues and in particular at the leaf level. Results: The mechanism of nitrate uptake in leaves of cucumber (Cucumis sativus L. cv. Chinese long) plants was studied and compared with that of the root. Net nitrate uptake by roots of nitrate-depleted cucumber plants proved to be substrate-inducible and biphasic showing a saturable kinetics with a clear linear non saturable component at an anion concentration higher than 2 mM. Nitrate uptake by leaf discs of cucumber plants showed some similarities with that operating in the roots (e. g. electrogenic H+ dependence via involvement of proton pump, a certain degree of induction). However, it did not exhibit typical biphasic kinetics and was characterized by a higher Km with values out of the range usually recorded in roots of several different plant species. The quantity and activity of plasma membrane (PM) H+-ATPase of the vesicles isolated from leaf tissues of nitrate-treated plants for 12 h (peak of nitrate foliar uptake rate) increased with respect to that observed in the vesicles isolated from N-deprived control plants, thus suggesting an involvement of this enzyme in the leaf nitrate uptake process similar to that described in roots. Molecular analyses suggest the involvement of a specific isoform of PM H+-ATPase (CsHA1) and NRT2 transporter (CsNRT2) in root nitrate uptake. At the leaf level, nitrate treatment modulated the expression of CsHA2, highlighting a main putative role of this isogene in the process. Conclusions: Obtained results provide for the first time evidence that a saturable and substrate-inducible nitrate uptake mechanism operates in cucumber leaves. Its activity appears to be related to that of PM H+-ATPase activity and in particular to the induction of CsHA2 isoform. However the question about the molecular entity responsible for the transport of nitrate into leaf cells therefore still remains unresolved.en
dc.publisherBmc, London
dc.relationM.I.U.R. Grant of the Serbian Ministry of Education and Science [173028]
dc.rightsopenAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceBmc Plant Biology
dc.subjectnitrate
dc.subjectleaves
dc.subjectplasmamebrane
dc.subjectATPase
dc.subjectcucumber
dc.titleNitrate transport in cucumber leaves is an inducible process involving an increase in plasma membrane H+-ATPase activity and abundanceen
dc.typearticle
dc.rights.licenseBY
dc.citation.other12: -
dc.citation.rankaM21
dc.citation.volume12
dc.identifier.doi10.1186/1471-2229-12-66
dc.identifier.fulltexthttp://rimsi.imsi.bg.ac.rs/bitstream/id/777/566.pdf
dc.identifier.pmid22571503
dc.identifier.scopus2-s2.0-84860875648
dc.identifier.wos000306760400001
dc.type.versionpublishedVersion


Документи

Thumbnail

Овај документ се појављује у следећим колекцијама

Приказ основних података о документу