RIMSI - Repository of Institute for Multidisciplinary Research
University of Belgrade - Institute for Multidisciplinary Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The kinetics of the hydrogen oxidation reaction on WC/Pt catalyst with low content of Pt nano-particles

Authorized Users Only
2012
Authors
Obradović, Maja D
Gojković, Snežana Lj
Elezović, Nevenka R.
Ercius, P
Radmilović, Velimir R
Vračar, Ljiljana M
Krstajić, Nedeljko V
Article (Published version)
Metadata
Show full item record
Abstract
The catalytic activity of WC/Pt electrocatalysts towards hydrogen oxidation reaction (HOR) in acid solution was studied. Tungsten carbide (WC) prepared by polycondensation of resorcinol and formaldehyde in the presence of ammonium metatungstate salt and CTABr surfactant was used as the support of a Pt electrocatalyst (WC/Pt). The obtained WC/Pt electrodes were characterized by XRD, HRTEM, EDS, EELS and electrochemical measurements. HRTEM analysis showed that the WC particles possess a core-shell structure with a metallic tungsten core and a shell composed of a mixture of tungsten carbides shell (WC and W2C). The WC/Pt catalyst is composed of well-dispersed sub-nanometer Pt clusters which consist of a few to several tens of Pt atoms. EELS measurements indicate that the WC particles function as nucleation sites for Pt nanoparticles. Based on the Tafel-Heyrovsky-Volmer mechanism the corresponding kinetic equations were derived to describe the HOR current-potential behavior over the entire... potential region on RDE. The fitting showed that in the lower potential region HOR on Pt proceeds most likely via the Tafel-Volmer (TV) pathway. The kinetic results also showed that the WC/Pt(1%) when compared to the standard C/Pt(1%) electrode led to a remarkable enhancement of the hydrogen oxidation in an acidic medium, which was explained by H-spill-over between platinum and tungsten carbide.

Keywords:
Tungsten carbide / Platinum catalyst / Mechanism / Hydrogen oxidation
Source:
Journal of Electroanalytical Chemistry, 2012, 671, 24-32
Publisher:
  • Elsevier Science Sa, Lausanne
Funding / projects:
  • Development, characterization and application nanostructured and composite electrocatalysts and interactive supports for fuel cells and water electrolysis (RS-172054)

DOI: 10.1016/j.jelechem.2012.01.026

ISSN: 1572-6657

WoS: 000304215100004

Scopus: 2-s2.0-84858132501
[ Google Scholar ]
12
12
URI
http://rimsi.imsi.bg.ac.rs/handle/123456789/513
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za multidisciplinarna istraživanja
TY  - JOUR
AU  - Obradović, Maja D
AU  - Gojković, Snežana Lj
AU  - Elezović, Nevenka R.
AU  - Ercius, P
AU  - Radmilović, Velimir R
AU  - Vračar, Ljiljana M
AU  - Krstajić, Nedeljko V
PY  - 2012
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/513
AB  - The catalytic activity of WC/Pt electrocatalysts towards hydrogen oxidation reaction (HOR) in acid solution was studied. Tungsten carbide (WC) prepared by polycondensation of resorcinol and formaldehyde in the presence of ammonium metatungstate salt and CTABr surfactant was used as the support of a Pt electrocatalyst (WC/Pt). The obtained WC/Pt electrodes were characterized by XRD, HRTEM, EDS, EELS and electrochemical measurements. HRTEM analysis showed that the WC particles possess a core-shell structure with a metallic tungsten core and a shell composed of a mixture of tungsten carbides shell (WC and W2C). The WC/Pt catalyst is composed of well-dispersed sub-nanometer Pt clusters which consist of a few to several tens of Pt atoms. EELS measurements indicate that the WC particles function as nucleation sites for Pt nanoparticles. Based on the Tafel-Heyrovsky-Volmer mechanism the corresponding kinetic equations were derived to describe the HOR current-potential behavior over the entire potential region on RDE. The fitting showed that in the lower potential region HOR on Pt proceeds most likely via the Tafel-Volmer (TV) pathway. The kinetic results also showed that the WC/Pt(1%) when compared to the standard C/Pt(1%) electrode led to a remarkable enhancement of the hydrogen oxidation in an acidic medium, which was explained by H-spill-over between platinum and tungsten carbide.
PB  - Elsevier Science Sa, Lausanne
T2  - Journal of Electroanalytical Chemistry
T1  - The kinetics of the hydrogen oxidation reaction on WC/Pt catalyst with low content of Pt nano-particles
EP  - 32
SP  - 24
VL  - 671
DO  - 10.1016/j.jelechem.2012.01.026
ER  - 
@article{
author = "Obradović, Maja D and Gojković, Snežana Lj and Elezović, Nevenka R. and Ercius, P and Radmilović, Velimir R and Vračar, Ljiljana M and Krstajić, Nedeljko V",
year = "2012",
abstract = "The catalytic activity of WC/Pt electrocatalysts towards hydrogen oxidation reaction (HOR) in acid solution was studied. Tungsten carbide (WC) prepared by polycondensation of resorcinol and formaldehyde in the presence of ammonium metatungstate salt and CTABr surfactant was used as the support of a Pt electrocatalyst (WC/Pt). The obtained WC/Pt electrodes were characterized by XRD, HRTEM, EDS, EELS and electrochemical measurements. HRTEM analysis showed that the WC particles possess a core-shell structure with a metallic tungsten core and a shell composed of a mixture of tungsten carbides shell (WC and W2C). The WC/Pt catalyst is composed of well-dispersed sub-nanometer Pt clusters which consist of a few to several tens of Pt atoms. EELS measurements indicate that the WC particles function as nucleation sites for Pt nanoparticles. Based on the Tafel-Heyrovsky-Volmer mechanism the corresponding kinetic equations were derived to describe the HOR current-potential behavior over the entire potential region on RDE. The fitting showed that in the lower potential region HOR on Pt proceeds most likely via the Tafel-Volmer (TV) pathway. The kinetic results also showed that the WC/Pt(1%) when compared to the standard C/Pt(1%) electrode led to a remarkable enhancement of the hydrogen oxidation in an acidic medium, which was explained by H-spill-over between platinum and tungsten carbide.",
publisher = "Elsevier Science Sa, Lausanne",
journal = "Journal of Electroanalytical Chemistry",
title = "The kinetics of the hydrogen oxidation reaction on WC/Pt catalyst with low content of Pt nano-particles",
pages = "32-24",
volume = "671",
doi = "10.1016/j.jelechem.2012.01.026"
}
Obradović, M. D., Gojković, S. L., Elezović, N. R., Ercius, P., Radmilović, V. R., Vračar, L. M.,& Krstajić, N. V.. (2012). The kinetics of the hydrogen oxidation reaction on WC/Pt catalyst with low content of Pt nano-particles. in Journal of Electroanalytical Chemistry
Elsevier Science Sa, Lausanne., 671, 24-32.
https://doi.org/10.1016/j.jelechem.2012.01.026
Obradović MD, Gojković SL, Elezović NR, Ercius P, Radmilović VR, Vračar LM, Krstajić NV. The kinetics of the hydrogen oxidation reaction on WC/Pt catalyst with low content of Pt nano-particles. in Journal of Electroanalytical Chemistry. 2012;671:24-32.
doi:10.1016/j.jelechem.2012.01.026 .
Obradović, Maja D, Gojković, Snežana Lj, Elezović, Nevenka R., Ercius, P, Radmilović, Velimir R, Vračar, Ljiljana M, Krstajić, Nedeljko V, "The kinetics of the hydrogen oxidation reaction on WC/Pt catalyst with low content of Pt nano-particles" in Journal of Electroanalytical Chemistry, 671 (2012):24-32,
https://doi.org/10.1016/j.jelechem.2012.01.026 . .

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB