RIMSI - Repository of Institute for Multidisciplinary Research
University of Belgrade - Institute for Multidisciplinary Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Engineering carbon chains from mechanically stretched graphene-based materials

Authorized Users Only
2011
Authors
Erdogan, E.
Popov, Igor
Rocha, C. G.
Cuniberti, G.
Roche, S.
Seifert, Gotthard
Article (Published version)
Metadata
Show full item record
Abstract
The electrical response of graphene-based materials can be tailored under mechanical stress. We report different switching behaviors that take place in mechanically deformed graphene nanoribbons prior to the breakage of the junction. By performing tight-binding molecular dynamics, the study of structural changes of graphene nanoribbons with different widths is achieved, revealing that carbon chains are the ultimate bridges before the junction breaks. The electronic and transport calculations show that binary ON/OFF states can be switched prior to and during breakage depending on the atomic details of the nanoribbon. This work supports the interpretation of recent experiments on nonvolatile memory element engineering based on graphene break junctions.
Source:
Physical Review B, 2011, 83, 4
Publisher:
  • Amer Physical Soc, College Pk
Funding / projects:
  • European UnionEuropean Commission
  • Freistaat Sachsen [13857/2379]
  • NANOSIM-GRAPHENE Project [ANR-09-NANO-016-01, ANR/P3N2009]
  • Alexander von Humboldt FoundationAlexander von Humboldt Foundation
  • ICREAICREA Funding Source: Custom

DOI: 10.1103/PhysRevB.83.041401

ISSN: 1098-0121

WoS: 000286897900001

Scopus: 2-s2.0-79551634182
[ Google Scholar ]
50
URI
http://rimsi.imsi.bg.ac.rs/handle/123456789/492
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za multidisciplinarna istraživanja
TY  - JOUR
AU  - Erdogan, E.
AU  - Popov, Igor
AU  - Rocha, C. G.
AU  - Cuniberti, G.
AU  - Roche, S.
AU  - Seifert, Gotthard
PY  - 2011
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/492
AB  - The electrical response of graphene-based materials can be tailored under mechanical stress. We report different switching behaviors that take place in mechanically deformed graphene nanoribbons prior to the breakage of the junction. By performing tight-binding molecular dynamics, the study of structural changes of graphene nanoribbons with different widths is achieved, revealing that carbon chains are the ultimate bridges before the junction breaks. The electronic and transport calculations show that binary ON/OFF states can be switched prior to and during breakage depending on the atomic details of the nanoribbon. This work supports the interpretation of recent experiments on nonvolatile memory element engineering based on graphene break junctions.
PB  - Amer Physical Soc, College Pk
T2  - Physical Review B
T1  - Engineering carbon chains from mechanically stretched graphene-based materials
IS  - 4
VL  - 83
DO  - 10.1103/PhysRevB.83.041401
ER  - 
@article{
author = "Erdogan, E. and Popov, Igor and Rocha, C. G. and Cuniberti, G. and Roche, S. and Seifert, Gotthard",
year = "2011",
abstract = "The electrical response of graphene-based materials can be tailored under mechanical stress. We report different switching behaviors that take place in mechanically deformed graphene nanoribbons prior to the breakage of the junction. By performing tight-binding molecular dynamics, the study of structural changes of graphene nanoribbons with different widths is achieved, revealing that carbon chains are the ultimate bridges before the junction breaks. The electronic and transport calculations show that binary ON/OFF states can be switched prior to and during breakage depending on the atomic details of the nanoribbon. This work supports the interpretation of recent experiments on nonvolatile memory element engineering based on graphene break junctions.",
publisher = "Amer Physical Soc, College Pk",
journal = "Physical Review B",
title = "Engineering carbon chains from mechanically stretched graphene-based materials",
number = "4",
volume = "83",
doi = "10.1103/PhysRevB.83.041401"
}
Erdogan, E., Popov, I., Rocha, C. G., Cuniberti, G., Roche, S.,& Seifert, G.. (2011). Engineering carbon chains from mechanically stretched graphene-based materials. in Physical Review B
Amer Physical Soc, College Pk., 83(4).
https://doi.org/10.1103/PhysRevB.83.041401
Erdogan E, Popov I, Rocha CG, Cuniberti G, Roche S, Seifert G. Engineering carbon chains from mechanically stretched graphene-based materials. in Physical Review B. 2011;83(4).
doi:10.1103/PhysRevB.83.041401 .
Erdogan, E., Popov, Igor, Rocha, C. G., Cuniberti, G., Roche, S., Seifert, Gotthard, "Engineering carbon chains from mechanically stretched graphene-based materials" in Physical Review B, 83, no. 4 (2011),
https://doi.org/10.1103/PhysRevB.83.041401 . .

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB