RIMSI - Repository of Institute for Multidisciplinary Research
University of Belgrade - Institute for Multidisciplinary Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthesis and characterization of MoOx-Pt/C and TiOx-Pt/C nano-catalysts for oxygen reduction

Authorized Users Only
2009
Authors
Elezović, Nevenka R.
Babić, Biljana M.
Radmilović, Velimir R
Vračar, Ljiljana M
Krstajić, Nedeljko V
Article (Published version)
Metadata
Show full item record
Abstract
The oxygen reduction reaction (ORR) was studied at carbon supported MoOx-Pt/C and TiOx-Pt nanocatalysts in 0.5 mol dm(-3) HClO4 solution, at 25 degrees C. The MoOx-Pt/C and TiOx-Pt/C catalysts were prepared by the polyole method combined by MoOx or TiOx post-deposition. Home made catalysts were characterized by TEM and EDX techniques. It was found that catalyst nanoparticles were homogenously distributed over the carbon support with a mean particle size about 2.5 nm. Quite similar distribution and particle size was previously obtained for Pt/C catalyst. Results confirmed that MoOx and TiOx post-deposition did not lead to a significant growth of the Pt nanoparticles. The ORR kinetics was investigated by cyclic voltammetry and linear sweep voltammetry at the rotating disc electrode. These results showed the existence of two E - logj regions, usually observed with polycrystalline Pt in acid solution. It was proposed that the main path in the ORR mechanism on MoOx-Pt/C and TiOx-Pt/C cataly...sts was the direct four-electron process with the transfer of the first electron as the rate-determining step. The increase in catalytic activity for ORR on MoOx-Pt/C and TiOx-Pt/C catalysts, in comparison with Pt/C catalyst, was explained by synergetic effects due to the formation of the interface between the platinum and oxide materials and by spillover due to the surface diffusion of oxygen reaction intermediates.

Keywords:
TiOx-Pt/C catalyst / Oxygen reduction reaction / Nanoparticles / MoOx-Pt/C catalyst / Acid solution
Source:
Electrochimica Acta, 2009, 54, 9, 2404-2409
Publisher:
  • Pergamon-Elsevier Science Ltd, Oxford

DOI: 10.1016/j.electacta.2008.03.015

ISSN: 0013-4686

WoS: 000264743900002

Scopus: 2-s2.0-61449084812
[ Google Scholar ]
75
68
URI
http://rimsi.imsi.bg.ac.rs/handle/123456789/348
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za multidisciplinarna istraživanja
TY  - JOUR
AU  - Elezović, Nevenka R.
AU  - Babić, Biljana M.
AU  - Radmilović, Velimir R
AU  - Vračar, Ljiljana M
AU  - Krstajić, Nedeljko V
PY  - 2009
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/348
AB  - The oxygen reduction reaction (ORR) was studied at carbon supported MoOx-Pt/C and TiOx-Pt nanocatalysts in 0.5 mol dm(-3) HClO4 solution, at 25 degrees C. The MoOx-Pt/C and TiOx-Pt/C catalysts were prepared by the polyole method combined by MoOx or TiOx post-deposition. Home made catalysts were characterized by TEM and EDX techniques. It was found that catalyst nanoparticles were homogenously distributed over the carbon support with a mean particle size about 2.5 nm. Quite similar distribution and particle size was previously obtained for Pt/C catalyst. Results confirmed that MoOx and TiOx post-deposition did not lead to a significant growth of the Pt nanoparticles. The ORR kinetics was investigated by cyclic voltammetry and linear sweep voltammetry at the rotating disc electrode. These results showed the existence of two E - logj regions, usually observed with polycrystalline Pt in acid solution. It was proposed that the main path in the ORR mechanism on MoOx-Pt/C and TiOx-Pt/C catalysts was the direct four-electron process with the transfer of the first electron as the rate-determining step. The increase in catalytic activity for ORR on MoOx-Pt/C and TiOx-Pt/C catalysts, in comparison with Pt/C catalyst, was explained by synergetic effects due to the formation of the interface between the platinum and oxide materials and by spillover due to the surface diffusion of oxygen reaction intermediates.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Electrochimica Acta
T1  - Synthesis and characterization of MoOx-Pt/C and TiOx-Pt/C nano-catalysts for oxygen reduction
EP  - 2409
IS  - 9
SP  - 2404
VL  - 54
DO  - 10.1016/j.electacta.2008.03.015
ER  - 
@article{
author = "Elezović, Nevenka R. and Babić, Biljana M. and Radmilović, Velimir R and Vračar, Ljiljana M and Krstajić, Nedeljko V",
year = "2009",
abstract = "The oxygen reduction reaction (ORR) was studied at carbon supported MoOx-Pt/C and TiOx-Pt nanocatalysts in 0.5 mol dm(-3) HClO4 solution, at 25 degrees C. The MoOx-Pt/C and TiOx-Pt/C catalysts were prepared by the polyole method combined by MoOx or TiOx post-deposition. Home made catalysts were characterized by TEM and EDX techniques. It was found that catalyst nanoparticles were homogenously distributed over the carbon support with a mean particle size about 2.5 nm. Quite similar distribution and particle size was previously obtained for Pt/C catalyst. Results confirmed that MoOx and TiOx post-deposition did not lead to a significant growth of the Pt nanoparticles. The ORR kinetics was investigated by cyclic voltammetry and linear sweep voltammetry at the rotating disc electrode. These results showed the existence of two E - logj regions, usually observed with polycrystalline Pt in acid solution. It was proposed that the main path in the ORR mechanism on MoOx-Pt/C and TiOx-Pt/C catalysts was the direct four-electron process with the transfer of the first electron as the rate-determining step. The increase in catalytic activity for ORR on MoOx-Pt/C and TiOx-Pt/C catalysts, in comparison with Pt/C catalyst, was explained by synergetic effects due to the formation of the interface between the platinum and oxide materials and by spillover due to the surface diffusion of oxygen reaction intermediates.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Electrochimica Acta",
title = "Synthesis and characterization of MoOx-Pt/C and TiOx-Pt/C nano-catalysts for oxygen reduction",
pages = "2409-2404",
number = "9",
volume = "54",
doi = "10.1016/j.electacta.2008.03.015"
}
Elezović, N. R., Babić, B. M., Radmilović, V. R., Vračar, L. M.,& Krstajić, N. V.. (2009). Synthesis and characterization of MoOx-Pt/C and TiOx-Pt/C nano-catalysts for oxygen reduction. in Electrochimica Acta
Pergamon-Elsevier Science Ltd, Oxford., 54(9), 2404-2409.
https://doi.org/10.1016/j.electacta.2008.03.015
Elezović NR, Babić BM, Radmilović VR, Vračar LM, Krstajić NV. Synthesis and characterization of MoOx-Pt/C and TiOx-Pt/C nano-catalysts for oxygen reduction. in Electrochimica Acta. 2009;54(9):2404-2409.
doi:10.1016/j.electacta.2008.03.015 .
Elezović, Nevenka R., Babić, Biljana M., Radmilović, Velimir R, Vračar, Ljiljana M, Krstajić, Nedeljko V, "Synthesis and characterization of MoOx-Pt/C and TiOx-Pt/C nano-catalysts for oxygen reduction" in Electrochimica Acta, 54, no. 9 (2009):2404-2409,
https://doi.org/10.1016/j.electacta.2008.03.015 . .

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB