Effectiveness of phenoxyl radicals generated by peroxidase/H2O2-catalyzed oxidation of caffeate, ferulate, and p-coumarate in cooxidation of ascorbate and NADH
Samo za registrovane korisnike
2008
Članak u časopisu (Objavljena verzija)

Metapodaci
Prikaz svih podataka o dokumentuApstrakt
The rate of ascorbate and nicotinamide adenine dinucleotide plus hydrogen (NADH) cooxidation (i.e., their nonenzymic oxidation by peroxidase/H2O2-generated phenoxyl radicals of three hydroxycinnamates: caffeate, ferulate and p-coumarate) was studied in vitro. The reactions initiated by different sources of peroxidase (EC 1.11.1.7) [isolates from soybean (Glycine max L.) seed coat, maize (Zea mays L.) root-cell wall, and commercial horseradish peroxidase] were monitored. Native electrophoresis of samples and specific staining for peroxidase activity revealed various isoforms in each of the three enzyme sources. The peroxidase sources differed both in the rate of H2O2-dependent hydroxycinnamate oxidation and in the order of affinity for the phenolic substrates. The three hydroxycinnamates did not differ in their ability to cooxidize ascorbate, whereas NADH cooxidation was affected by substitution of the phenolic ring. Thus, p-coumarate was more efficient than caffeate in NADH cooxidation..., with ferulate not being effective at all. Metal ions (Zn2+ and Al3+) inhibited the reaction of peroxidase with p-coumarate and affected the cooxidation rate of ascorbate and the peroxidase reaction in the same manner with all substrates used. However, inhibition of p-coumarate oxidation by metal ions did not affect NADH cooxidation rate. We propose that both the ascorbate and NADH cooxidation systems can function as mechanisms to scavenge H2O2 and regenerate phenolics in different cellular compartments, thus contributing to protection from oxidative damage.
Ključne reči:
phenoxyl radicals / peroxidase / NADH / hydroxycinnamates / ascorbateIzvor:
Journal of Plant Research, 2008, 121, 1, 115-123Izdavač:
- Springer Japan Kk, Tokyo
DOI: 10.1007/s10265-007-0124-x
ISSN: 0918-9440
PubMed: 18071845
WoS: 000252192500014
Scopus: 2-s2.0-38049001193
Institucija/grupa
Institut za multidisciplinarna istraživanjaTY - JOUR AU - Hadzi-Tasković Sukalović, Vesna AU - Vuletic, Mirjana AU - Vučinić, Željko AU - Veljović-Jovanović, Sonja PY - 2008 UR - http://rimsi.imsi.bg.ac.rs/handle/123456789/264 AB - The rate of ascorbate and nicotinamide adenine dinucleotide plus hydrogen (NADH) cooxidation (i.e., their nonenzymic oxidation by peroxidase/H2O2-generated phenoxyl radicals of three hydroxycinnamates: caffeate, ferulate and p-coumarate) was studied in vitro. The reactions initiated by different sources of peroxidase (EC 1.11.1.7) [isolates from soybean (Glycine max L.) seed coat, maize (Zea mays L.) root-cell wall, and commercial horseradish peroxidase] were monitored. Native electrophoresis of samples and specific staining for peroxidase activity revealed various isoforms in each of the three enzyme sources. The peroxidase sources differed both in the rate of H2O2-dependent hydroxycinnamate oxidation and in the order of affinity for the phenolic substrates. The three hydroxycinnamates did not differ in their ability to cooxidize ascorbate, whereas NADH cooxidation was affected by substitution of the phenolic ring. Thus, p-coumarate was more efficient than caffeate in NADH cooxidation, with ferulate not being effective at all. Metal ions (Zn2+ and Al3+) inhibited the reaction of peroxidase with p-coumarate and affected the cooxidation rate of ascorbate and the peroxidase reaction in the same manner with all substrates used. However, inhibition of p-coumarate oxidation by metal ions did not affect NADH cooxidation rate. We propose that both the ascorbate and NADH cooxidation systems can function as mechanisms to scavenge H2O2 and regenerate phenolics in different cellular compartments, thus contributing to protection from oxidative damage. PB - Springer Japan Kk, Tokyo T2 - Journal of Plant Research T1 - Effectiveness of phenoxyl radicals generated by peroxidase/H2O2-catalyzed oxidation of caffeate, ferulate, and p-coumarate in cooxidation of ascorbate and NADH EP - 123 IS - 1 SP - 115 VL - 121 DO - 10.1007/s10265-007-0124-x ER -
@article{ author = "Hadzi-Tasković Sukalović, Vesna and Vuletic, Mirjana and Vučinić, Željko and Veljović-Jovanović, Sonja", year = "2008", abstract = "The rate of ascorbate and nicotinamide adenine dinucleotide plus hydrogen (NADH) cooxidation (i.e., their nonenzymic oxidation by peroxidase/H2O2-generated phenoxyl radicals of three hydroxycinnamates: caffeate, ferulate and p-coumarate) was studied in vitro. The reactions initiated by different sources of peroxidase (EC 1.11.1.7) [isolates from soybean (Glycine max L.) seed coat, maize (Zea mays L.) root-cell wall, and commercial horseradish peroxidase] were monitored. Native electrophoresis of samples and specific staining for peroxidase activity revealed various isoforms in each of the three enzyme sources. The peroxidase sources differed both in the rate of H2O2-dependent hydroxycinnamate oxidation and in the order of affinity for the phenolic substrates. The three hydroxycinnamates did not differ in their ability to cooxidize ascorbate, whereas NADH cooxidation was affected by substitution of the phenolic ring. Thus, p-coumarate was more efficient than caffeate in NADH cooxidation, with ferulate not being effective at all. Metal ions (Zn2+ and Al3+) inhibited the reaction of peroxidase with p-coumarate and affected the cooxidation rate of ascorbate and the peroxidase reaction in the same manner with all substrates used. However, inhibition of p-coumarate oxidation by metal ions did not affect NADH cooxidation rate. We propose that both the ascorbate and NADH cooxidation systems can function as mechanisms to scavenge H2O2 and regenerate phenolics in different cellular compartments, thus contributing to protection from oxidative damage.", publisher = "Springer Japan Kk, Tokyo", journal = "Journal of Plant Research", title = "Effectiveness of phenoxyl radicals generated by peroxidase/H2O2-catalyzed oxidation of caffeate, ferulate, and p-coumarate in cooxidation of ascorbate and NADH", pages = "123-115", number = "1", volume = "121", doi = "10.1007/s10265-007-0124-x" }
Hadzi-Tasković Sukalović, V., Vuletic, M., Vučinić, Ž.,& Veljović-Jovanović, S.. (2008). Effectiveness of phenoxyl radicals generated by peroxidase/H2O2-catalyzed oxidation of caffeate, ferulate, and p-coumarate in cooxidation of ascorbate and NADH. in Journal of Plant Research Springer Japan Kk, Tokyo., 121(1), 115-123. https://doi.org/10.1007/s10265-007-0124-x
Hadzi-Tasković Sukalović V, Vuletic M, Vučinić Ž, Veljović-Jovanović S. Effectiveness of phenoxyl radicals generated by peroxidase/H2O2-catalyzed oxidation of caffeate, ferulate, and p-coumarate in cooxidation of ascorbate and NADH. in Journal of Plant Research. 2008;121(1):115-123. doi:10.1007/s10265-007-0124-x .
Hadzi-Tasković Sukalović, Vesna, Vuletic, Mirjana, Vučinić, Željko, Veljović-Jovanović, Sonja, "Effectiveness of phenoxyl radicals generated by peroxidase/H2O2-catalyzed oxidation of caffeate, ferulate, and p-coumarate in cooxidation of ascorbate and NADH" in Journal of Plant Research, 121, no. 1 (2008):115-123, https://doi.org/10.1007/s10265-007-0124-x . .