RIMSI - Repository of Institute for Multidisciplinary Research
University of Belgrade - Institute for Multidisciplinary Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Silicon modifies leaf nutriome and improves growth of oak seedlings exposed to phosphorus deficiency and Phytophthora plurivora infection

Thumbnail
2023
fpls-14-1265782.pdf (2.748Mb)
Authors
Kostić, Igor
Nikolić, Nina
Milanovic, Slobodan
Milenkovic, Ivan
Pavlović, Jelena
Paravinja, Ana
Nikolic, Miroslav
Article (Published version)
,
Kostic, Nikolic, Milanovic, Milenkovic, Pavlovic, Paravinja and Nikolic
Metadata
Show full item record
Abstract
Beneficial effects of silicon (Si) on plants have primarily been studied in crop species under single stress. Moreover, nutrient acquisition-based responses to combination of biotic and abiotic stresses (a common situation in natural habitats) have rarely been reported, in particular in conjunction with soil amendments with Si. Pedunculate oak (Quercus robur L.), one of the ecologically and economically most important tree species in Europe, is facing a severe decline due to combined stresses, but also problems in assisted regeneration in nurseries. Here, we studied the effect of Si supply on the leaf nutriome, root traits and overall growth of 12-weeks-old oak seedlings exposed to abiotic stress [low phosphorus (P) supply], biotic stress (Phytophthora plurivora root infection), and their combination. The application of Si had the strongest ameliorative effect on growth, root health and root phenome under the most severe stress conditions (i.e., combination of P deficiency and P. pluri...vora root infection), where it differentially affected the uptake and leaf accumulation in 11 out of 13 analysed nutrients. Silicon supply tended to reverse the pattern of change of some, but not all, leaf nutrients affected by stresses: P, boron (B) and magnesium (Mg) under P deficiency, and P, B and sulphur (S) under pathogen attack, but also nickel (Ni) and molybdenum (Mo) under all three stresses. Surprisingly, Si affected some nutrients that were not changed by a particular stress itself and decreased leaf Mg levels under all the stresses. On the other hand, pathogen attack increased leaf accumulation of Si. This exploratory work presents the complexity of nutrient crosstalk under three stresses, and opens more questions about genetic networks that control plant physiological responses. Practically, we show a potential of Si application to improve P status and root health in oak seedlings, particularly in nurseries.

Keywords:
combined stress / ionomics / nutrient crosstalk / Quercus robur / root architecture
Source:
Frontiers in Plant Science, 2023, 14, 1265782.-
Publisher:
  • Frontiers
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200053 (University of Belgrade, Institute for Multidisciplinary Research) (RS-200053)

DOI: 10.3389/fpls.2023.1265782

ISSN: 1664-462X

[ Google Scholar ]
URI
http://rimsi.imsi.bg.ac.rs/handle/123456789/2101
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za multidisciplinarna istraživanja
TY  - JOUR
AU  - Kostić, Igor
AU  - Nikolić, Nina
AU  - Milanovic, Slobodan
AU  - Milenkovic, Ivan
AU  - Pavlović, Jelena
AU  - Paravinja, Ana
AU  - Nikolic, Miroslav
PY  - 2023
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2101
AB  - Beneficial effects of silicon (Si) on plants have primarily been studied in crop species under single stress. Moreover, nutrient acquisition-based responses to combination of biotic and abiotic stresses (a common situation in natural habitats) have rarely been reported, in particular in conjunction with soil amendments with Si. Pedunculate oak (Quercus robur L.), one of the ecologically and economically most important tree species in Europe, is facing a severe decline due to combined stresses, but also problems in assisted regeneration in nurseries. Here, we studied the effect of Si supply on the leaf nutriome, root traits and overall growth of 12-weeks-old oak seedlings exposed to abiotic stress [low phosphorus (P) supply], biotic stress (Phytophthora plurivora root infection), and their combination. The application of Si had the strongest ameliorative effect on growth, root health and root phenome under the most severe stress conditions (i.e., combination of P deficiency and P. plurivora root infection), where it differentially affected the uptake and leaf accumulation in 11 out of 13 analysed nutrients. Silicon supply tended to reverse the pattern of change of some, but not all, leaf nutrients affected by stresses: P, boron (B) and magnesium (Mg) under P deficiency, and P, B and sulphur (S) under pathogen attack, but also nickel (Ni) and molybdenum (Mo) under all three stresses. Surprisingly, Si affected some nutrients that were not changed by a particular stress itself and decreased leaf Mg levels under all the stresses. On the other hand, pathogen attack increased leaf accumulation of Si. This exploratory work presents the complexity of nutrient crosstalk under three stresses, and opens more questions about genetic networks that control plant physiological responses. Practically, we show a potential of Si application to improve P status and root health in oak seedlings, particularly in nurseries.
PB  - Frontiers
T2  - Frontiers in Plant Science
T1  - Silicon modifies leaf nutriome and improves growth of oak seedlings exposed to phosphorus deficiency and Phytophthora plurivora infection
IS  - 14
SP  - 1265782.
DO  - 10.3389/fpls.2023.1265782
ER  - 
@article{
author = "Kostić, Igor and Nikolić, Nina and Milanovic, Slobodan and Milenkovic, Ivan and Pavlović, Jelena and Paravinja, Ana and Nikolic, Miroslav",
year = "2023",
abstract = "Beneficial effects of silicon (Si) on plants have primarily been studied in crop species under single stress. Moreover, nutrient acquisition-based responses to combination of biotic and abiotic stresses (a common situation in natural habitats) have rarely been reported, in particular in conjunction with soil amendments with Si. Pedunculate oak (Quercus robur L.), one of the ecologically and economically most important tree species in Europe, is facing a severe decline due to combined stresses, but also problems in assisted regeneration in nurseries. Here, we studied the effect of Si supply on the leaf nutriome, root traits and overall growth of 12-weeks-old oak seedlings exposed to abiotic stress [low phosphorus (P) supply], biotic stress (Phytophthora plurivora root infection), and their combination. The application of Si had the strongest ameliorative effect on growth, root health and root phenome under the most severe stress conditions (i.e., combination of P deficiency and P. plurivora root infection), where it differentially affected the uptake and leaf accumulation in 11 out of 13 analysed nutrients. Silicon supply tended to reverse the pattern of change of some, but not all, leaf nutrients affected by stresses: P, boron (B) and magnesium (Mg) under P deficiency, and P, B and sulphur (S) under pathogen attack, but also nickel (Ni) and molybdenum (Mo) under all three stresses. Surprisingly, Si affected some nutrients that were not changed by a particular stress itself and decreased leaf Mg levels under all the stresses. On the other hand, pathogen attack increased leaf accumulation of Si. This exploratory work presents the complexity of nutrient crosstalk under three stresses, and opens more questions about genetic networks that control plant physiological responses. Practically, we show a potential of Si application to improve P status and root health in oak seedlings, particularly in nurseries.",
publisher = "Frontiers",
journal = "Frontiers in Plant Science",
title = "Silicon modifies leaf nutriome and improves growth of oak seedlings exposed to phosphorus deficiency and Phytophthora plurivora infection",
number = "14",
pages = "1265782.",
doi = "10.3389/fpls.2023.1265782"
}
Kostić, I., Nikolić, N., Milanovic, S., Milenkovic, I., Pavlović, J., Paravinja, A.,& Nikolic, M.. (2023). Silicon modifies leaf nutriome and improves growth of oak seedlings exposed to phosphorus deficiency and Phytophthora plurivora infection. in Frontiers in Plant Science
Frontiers.(14), 1265782..
https://doi.org/10.3389/fpls.2023.1265782
Kostić I, Nikolić N, Milanovic S, Milenkovic I, Pavlović J, Paravinja A, Nikolic M. Silicon modifies leaf nutriome and improves growth of oak seedlings exposed to phosphorus deficiency and Phytophthora plurivora infection. in Frontiers in Plant Science. 2023;(14):1265782..
doi:10.3389/fpls.2023.1265782 .
Kostić, Igor, Nikolić, Nina, Milanovic, Slobodan, Milenkovic, Ivan, Pavlović, Jelena, Paravinja, Ana, Nikolic, Miroslav, "Silicon modifies leaf nutriome and improves growth of oak seedlings exposed to phosphorus deficiency and Phytophthora plurivora infection" in Frontiers in Plant Science, no. 14 (2023):1265782.,
https://doi.org/10.3389/fpls.2023.1265782 . .

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB