RIMSI - Repository of Institute for Multidisciplinary Research
University of Belgrade - Institute for Multidisciplinary Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hierarchical ZnO/SnO2 heterostructures via hydrothermally assisted electrospinning technique: synthesis and photocatalytic performances

Thumbnail
2022
bitstream_5354.pdf (2.400Mb)
Authors
Vojisavljević, Katarina
Vukašinović, Jelena
Počuča-Nešić, Milica
Savic, Slavica
Podlogar, Matejka
Zemljak, Olivera
Branković, Zorica
Conference object (Published version)
Metadata
Show full item record
Abstract
Hierarchical nanostructures with multiporous tin oxide nanofibers (SnO2- MPNFs) and zinc oxide nanorods (ZnO-NRs) have been synthesized by combining electrospinning technique and hydrothermal method. A solution containing uniformly distributed tin (Sn) and silicon (Si) species of precursors, as well as a sacrificial polymer (PVP) was electrospun using a single-nozzle spinneret to fabricate nanofibers. In virtue of the Kirkendall effect driven by calcination at 550 °C, the SiO2-cored SnO2 nanofibers (SnO2-SiO2-NFs) deliberated from PVP were formed and used as backbones for further hydrothermal growth of ZnO-NRs. By varying the hydrothermal reaction time (0.5–2 h) at the constant concentration of SnO2-SiO2-NFs, zinc (Zn) precursor, directing agent (hexamethylenetetramine, HMT) and aqueous ammonia, the density, length and thickness of ZnO-NRs were controlled. Nanofibers and ZnO-NRs/SnO2-MPNFs heterostructures are confirmed by X-ray diffraction (XRD), field-emission scanning el...ectron microcopy (FE-SEM), energy dispersive spectrometer (EDS), transmission electron microscopy (TEM) and elemental mapping analysis. The hydrothermal treatment conducted at 90 °C in aqueous ammonia allowed: a) selective etching of SiO2 from the SnO2-SiO2-NFs core and SiO2 trapped between SnO2 particles, and b) effective growth of ZnO-NRs. The process resulted in ZnO-NRs/SnO2-MPNFs heterostructures with ZnO-NRs of 1–5 μm in length attached to SnO2-MPNFs, the shell of which was composed of ultra-fine SnO2 crystallites (~5 nm in size) and where the four porous channels create the core instead of SiO2. Photocatalytic performance of the heterostructures was investigated toward different organic azo-dyes (methylene blue, methyl orange) and obvious enhancement was demonstrated in degradation of the organic pollutant, compared to primary SnO2-based nanofibers.

Keywords:
Electrospinning / Nanofibers / Hierarchical nanostructures / Photocatalytic activity / Organic azo-dyes
Source:
6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia, 2022, 51-
Publisher:
  • University of Belgrade, Institute for Multidisciplinary Research
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200053 (University of Belgrade, Institute for Multidisciplinary Research) (RS-200053)

ISBN: 978-86-80109-23-7

[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_rimsi_2038
URI
http://rimsi.imsi.bg.ac.rs/handle/123456789/2038
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za multidisciplinarna istraživanja
TY  - CONF
AU  - Vojisavljević, Katarina
AU  - Vukašinović, Jelena
AU  - Počuča-Nešić, Milica
AU  - Savic, Slavica
AU  - Podlogar, Matejka
AU  - Zemljak, Olivera
AU  - Branković, Zorica
PY  - 2022
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2038
AB  - Hierarchical nanostructures with multiporous tin oxide nanofibers (SnO2-
MPNFs) and zinc oxide nanorods (ZnO-NRs) have been synthesized by combining
electrospinning technique and hydrothermal method. A solution containing
uniformly distributed tin (Sn) and silicon (Si) species of precursors, as well as a
sacrificial polymer (PVP) was electrospun using a single-nozzle spinneret to
fabricate nanofibers. In virtue of the Kirkendall effect driven by calcination at
550 °C, the SiO2-cored SnO2 nanofibers (SnO2-SiO2-NFs) deliberated from PVP
were formed and used as backbones for further hydrothermal growth of ZnO-NRs.
By varying the hydrothermal reaction time (0.5–2 h) at the constant concentration of
SnO2-SiO2-NFs, zinc (Zn) precursor, directing agent (hexamethylenetetramine,
HMT) and aqueous ammonia, the density, length and thickness of ZnO-NRs were
controlled. Nanofibers and ZnO-NRs/SnO2-MPNFs heterostructures are confirmed
by X-ray diffraction (XRD), field-emission scanning electron microcopy (FE-SEM),
energy dispersive spectrometer (EDS), transmission electron microscopy (TEM) and
elemental mapping analysis. 
The hydrothermal treatment conducted at 90 °C in aqueous ammonia allowed:
a) selective etching of SiO2 from the SnO2-SiO2-NFs core and SiO2 trapped between
SnO2 particles, and b) effective growth of ZnO-NRs. The process resulted in
ZnO-NRs/SnO2-MPNFs heterostructures with ZnO-NRs of 1–5 μm in length
attached to SnO2-MPNFs, the shell of which was composed of ultra-fine SnO2
crystallites (~5 nm in size) and where the four porous channels create the core
instead of SiO2. Photocatalytic performance of the heterostructures was investigated
toward different organic azo-dyes (methylene blue, methyl orange) and obvious
enhancement was demonstrated in degradation of the organic pollutant, compared to
primary SnO2-based nanofibers.
PB  - University of Belgrade, Institute for Multidisciplinary Research
C3  - 6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia
T1  - Hierarchical ZnO/SnO2 heterostructures via hydrothermally assisted electrospinning technique: synthesis and photocatalytic performances
SP  - 51
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2038
ER  - 
@conference{
author = "Vojisavljević, Katarina and Vukašinović, Jelena and Počuča-Nešić, Milica and Savic, Slavica and Podlogar, Matejka and Zemljak, Olivera and Branković, Zorica",
year = "2022",
abstract = "Hierarchical nanostructures with multiporous tin oxide nanofibers (SnO2-
MPNFs) and zinc oxide nanorods (ZnO-NRs) have been synthesized by combining
electrospinning technique and hydrothermal method. A solution containing
uniformly distributed tin (Sn) and silicon (Si) species of precursors, as well as a
sacrificial polymer (PVP) was electrospun using a single-nozzle spinneret to
fabricate nanofibers. In virtue of the Kirkendall effect driven by calcination at
550 °C, the SiO2-cored SnO2 nanofibers (SnO2-SiO2-NFs) deliberated from PVP
were formed and used as backbones for further hydrothermal growth of ZnO-NRs.
By varying the hydrothermal reaction time (0.5–2 h) at the constant concentration of
SnO2-SiO2-NFs, zinc (Zn) precursor, directing agent (hexamethylenetetramine,
HMT) and aqueous ammonia, the density, length and thickness of ZnO-NRs were
controlled. Nanofibers and ZnO-NRs/SnO2-MPNFs heterostructures are confirmed
by X-ray diffraction (XRD), field-emission scanning electron microcopy (FE-SEM),
energy dispersive spectrometer (EDS), transmission electron microscopy (TEM) and
elemental mapping analysis. 
The hydrothermal treatment conducted at 90 °C in aqueous ammonia allowed:
a) selective etching of SiO2 from the SnO2-SiO2-NFs core and SiO2 trapped between
SnO2 particles, and b) effective growth of ZnO-NRs. The process resulted in
ZnO-NRs/SnO2-MPNFs heterostructures with ZnO-NRs of 1–5 μm in length
attached to SnO2-MPNFs, the shell of which was composed of ultra-fine SnO2
crystallites (~5 nm in size) and where the four porous channels create the core
instead of SiO2. Photocatalytic performance of the heterostructures was investigated
toward different organic azo-dyes (methylene blue, methyl orange) and obvious
enhancement was demonstrated in degradation of the organic pollutant, compared to
primary SnO2-based nanofibers.",
publisher = "University of Belgrade, Institute for Multidisciplinary Research",
journal = "6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia",
title = "Hierarchical ZnO/SnO2 heterostructures via hydrothermally assisted electrospinning technique: synthesis and photocatalytic performances",
pages = "51",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2038"
}
Vojisavljević, K., Vukašinović, J., Počuča-Nešić, M., Savic, S., Podlogar, M., Zemljak, O.,& Branković, Z.. (2022). Hierarchical ZnO/SnO2 heterostructures via hydrothermally assisted electrospinning technique: synthesis and photocatalytic performances. in 6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia
University of Belgrade, Institute for Multidisciplinary Research., 51.
https://hdl.handle.net/21.15107/rcub_rimsi_2038
Vojisavljević K, Vukašinović J, Počuča-Nešić M, Savic S, Podlogar M, Zemljak O, Branković Z. Hierarchical ZnO/SnO2 heterostructures via hydrothermally assisted electrospinning technique: synthesis and photocatalytic performances. in 6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia. 2022;:51.
https://hdl.handle.net/21.15107/rcub_rimsi_2038 .
Vojisavljević, Katarina, Vukašinović, Jelena, Počuča-Nešić, Milica, Savic, Slavica, Podlogar, Matejka, Zemljak, Olivera, Branković, Zorica, "Hierarchical ZnO/SnO2 heterostructures via hydrothermally assisted electrospinning technique: synthesis and photocatalytic performances" in 6th Conference of the Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia (2022):51,
https://hdl.handle.net/21.15107/rcub_rimsi_2038 .

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB