RIMSI - Repozitorijum Instituta za multidisciplinarna istraživanja
Univerzitet u Beogradu - Institut za multidisciplinarna istraživanja
    • English
    • Српски
    • Српски (Serbia)
  • Srpski (latinica) 
    • Engleski
    • Srpski (ćirilica)
    • Srpski (latinica)
  • Prijava
Pregled zapisa 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • Pregled zapisa
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • Pregled zapisa
JavaScript is disabled for your browser. Some features of this site may not work without it.

Composite scaffolds based on magnesium doped hydroxyapatite and mesoporous nanosized bioactive glass

Samo za registrovane korisnike
2022
Autori
Matic, Tamara
Baščarević, Zvezdana
Janackovic, Djordje
Veljovic, Djordje
Konferencijski prilog (Objavljena verzija)
,
2022 Materials Research Society of Serbia – MRS-Serbi
Metapodaci
Prikaz svih podataka o dokumentu
Apstrakt
Bioceramic materials based on hydroxyapatite (HAP) are widely used as scaffolding material for bone tissue engineering due to their similarity with inorganic part of human bones. Magnesium ion as a dopant in hydroxyapatite was previously shown to improve mechanical properties of HAP based materials, as well as to improve osteoblasts cell proliferation, and induce angiogenesis which stimulate the bone regeneration. Mesoporous bioactive glass nanoparticles (MBGNPs) present the latest generation of the sol-gel glasses, having high surface area and large pore volume that allow the loading of drugs (antiinflammatory, anti-osteoporotic, anti-cancer etc.) and growth factors for stimulating cell differentiation and proliferation. MBGNPs are highly soluble and more bioactive compared to the hydroxyapatite. However, their high porosity leads to poor mechanical properties of pure MBGNP-based scaffolds. Here we propose composite scaffolds based on magnesium doped hydroxyapatite and MBGNPs obtain...ed by a modified microemulsion-assisted sol-gel synthesis for bone tissue engineering application. Hydrothermally obtained hydroxyapatite doped with 5 mol. % of magnesium ions was calcinated at 1000 °C and mixed with 10-20 wt.% BGNPs to form composite scaffolds by sponge replica method. The addition of MBGNPs has the influence on the sinterability, mechanical properties and bioactivity of the scaffolds.

Ključne reči:
hydroxyapatite / mesoporous bioactive glass nanoparticles / Mg doped hydroxyapatite / sol-gel synthesis
Izvor:
Twenty-third Annual Conference YUCOMAT 2022 & Twelfth World Round Table Conference on Sintering XII WRTCS Program and the Book of Abstracts, 2022, 167-167
Izdavač:
  • Materials Research Society of Serbia

ISBN: 978-86-919111-7-1

[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_rimsi_1937
URI
http://rimsi.imsi.bg.ac.rs/handle/123456789/1937
Kolekcije
  • Radovi istraživača / Researchers’ publications
Institucija/grupa
Institut za multidisciplinarna istraživanja
TY  - CONF
AU  - Matic, Tamara
AU  - Baščarević, Zvezdana
AU  - Janackovic, Djordje
AU  - Veljovic, Djordje
PY  - 2022
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1937
AB  - Bioceramic materials based on hydroxyapatite (HAP) are widely used as scaffolding material for bone tissue engineering due to their similarity with inorganic part of human bones. Magnesium ion as a dopant in hydroxyapatite was previously shown to improve mechanical properties of HAP based materials, as well as to improve osteoblasts cell proliferation, and induce angiogenesis which stimulate the bone regeneration.
Mesoporous bioactive glass nanoparticles (MBGNPs) present the latest generation of the sol-gel glasses, having high surface area and large pore volume that allow the loading of drugs (antiinflammatory, anti-osteoporotic, anti-cancer etc.) and growth factors for stimulating cell differentiation and proliferation. MBGNPs are highly soluble and more bioactive compared to the hydroxyapatite. However, their high porosity leads to poor mechanical properties of pure MBGNP-based scaffolds.
Here we propose composite scaffolds based on magnesium doped hydroxyapatite and MBGNPs obtained by a modified microemulsion-assisted sol-gel synthesis for bone tissue engineering application. Hydrothermally obtained hydroxyapatite doped with 5 mol. % of magnesium ions was calcinated at 1000 °C and mixed with 10-20 wt.% BGNPs to form composite scaffolds by sponge replica method. The addition of MBGNPs has the influence on the sinterability, mechanical properties and bioactivity of the scaffolds.
PB  - Materials Research Society of Serbia
C3  - Twenty-third Annual Conference YUCOMAT 2022 & Twelfth World Round Table Conference on Sintering XII WRTCS Program and the Book of Abstracts
T1  - Composite scaffolds based on magnesium doped hydroxyapatite and mesoporous nanosized bioactive glass
EP  - 167
SP  - 167
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_1937
ER  - 
@conference{
author = "Matic, Tamara and Baščarević, Zvezdana and Janackovic, Djordje and Veljovic, Djordje",
year = "2022",
abstract = "Bioceramic materials based on hydroxyapatite (HAP) are widely used as scaffolding material for bone tissue engineering due to their similarity with inorganic part of human bones. Magnesium ion as a dopant in hydroxyapatite was previously shown to improve mechanical properties of HAP based materials, as well as to improve osteoblasts cell proliferation, and induce angiogenesis which stimulate the bone regeneration.
Mesoporous bioactive glass nanoparticles (MBGNPs) present the latest generation of the sol-gel glasses, having high surface area and large pore volume that allow the loading of drugs (antiinflammatory, anti-osteoporotic, anti-cancer etc.) and growth factors for stimulating cell differentiation and proliferation. MBGNPs are highly soluble and more bioactive compared to the hydroxyapatite. However, their high porosity leads to poor mechanical properties of pure MBGNP-based scaffolds.
Here we propose composite scaffolds based on magnesium doped hydroxyapatite and MBGNPs obtained by a modified microemulsion-assisted sol-gel synthesis for bone tissue engineering application. Hydrothermally obtained hydroxyapatite doped with 5 mol. % of magnesium ions was calcinated at 1000 °C and mixed with 10-20 wt.% BGNPs to form composite scaffolds by sponge replica method. The addition of MBGNPs has the influence on the sinterability, mechanical properties and bioactivity of the scaffolds.",
publisher = "Materials Research Society of Serbia",
journal = "Twenty-third Annual Conference YUCOMAT 2022 & Twelfth World Round Table Conference on Sintering XII WRTCS Program and the Book of Abstracts",
title = "Composite scaffolds based on magnesium doped hydroxyapatite and mesoporous nanosized bioactive glass",
pages = "167-167",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_1937"
}
Matic, T., Baščarević, Z., Janackovic, D.,& Veljovic, D.. (2022). Composite scaffolds based on magnesium doped hydroxyapatite and mesoporous nanosized bioactive glass. in Twenty-third Annual Conference YUCOMAT 2022 & Twelfth World Round Table Conference on Sintering XII WRTCS Program and the Book of Abstracts
Materials Research Society of Serbia., 167-167.
https://hdl.handle.net/21.15107/rcub_rimsi_1937
Matic T, Baščarević Z, Janackovic D, Veljovic D. Composite scaffolds based on magnesium doped hydroxyapatite and mesoporous nanosized bioactive glass. in Twenty-third Annual Conference YUCOMAT 2022 & Twelfth World Round Table Conference on Sintering XII WRTCS Program and the Book of Abstracts. 2022;:167-167.
https://hdl.handle.net/21.15107/rcub_rimsi_1937 .
Matic, Tamara, Baščarević, Zvezdana, Janackovic, Djordje, Veljovic, Djordje, "Composite scaffolds based on magnesium doped hydroxyapatite and mesoporous nanosized bioactive glass" in Twenty-third Annual Conference YUCOMAT 2022 & Twelfth World Round Table Conference on Sintering XII WRTCS Program and the Book of Abstracts (2022):167-167,
https://hdl.handle.net/21.15107/rcub_rimsi_1937 .

DSpace software copyright © 2002-2015  DuraSpace
O repozitorijumu RIMSI | Pošaljite zapažanja

OpenAIRERCUB
 

 

Kompletan repozitorijumGrupeAutoriNasloviTemeOva institucijaAutoriNasloviTeme

Statistika

Pregled statistika

DSpace software copyright © 2002-2015  DuraSpace
O repozitorijumu RIMSI | Pošaljite zapažanja

OpenAIRERCUB