RIMSI - Repository of Institute for Multidisciplinary Research
University of Belgrade - Institute for Multidisciplinary Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effects of exogenous salicylic acid on alleviation of arsenic-induced oxidative damages in rice

Authorized Users Only
2022
Authors
Jiang, Yishun
Gao, Zixiang
Zhang, Xinyuan
Nikolic, Miroslav
Liang, Yongchao
Article (Published version)
Metadata
Show full item record
Abstract
Salicylic acid (SA) is a phenolic phytohormone that plays a vital role in plant development and mediates plant responses to plenty of adversity including arsenic (As) stress. The effects of exogenous addition of SA on As tolerance and As accumulation were assessed in two cultivars of rice (Oryza sativa L.) Nipponbare and Zhongzao 39, hydroponically grown with Kimura B nutrient solution under arsenite [As (III)] and dimethylarsonic acid (DMA) exposure. In the second ex-periment, the influence of soaking seed with SA on As uptake and As damages was investigated in rice (cv. Nipponbare) exposed to As (III) and DMA. The results showed that exogenous addition of SA sig- nificantly decreased the concentrations of hydrogen peroxide (H2O2) and malondialdehyde (MDA) in both As (III)- and DMA-stressed rice, indicating that SA alleviates As-induced oxidative damages in rice. SA increased the activity of antioxidant enzymes and, moreover, increased the relative amount of glutathione (GSH) and asco...rbate (ASA) by accelerating the GSH- ASA circle system. Exogenous addition of SA significantly decreased the As concentration in both roots and shoots of rice under As(III) stress by influ- encing the expression of genes encoding As transporters, viz. OsLsi1, OsLsi2. The addition of SA significantly decreased the As content in shoots under DMA stress, which may be related to the expression of OsPTR7 involved in shoot xylem unloading. This finding may foster a novel perspec- tive for reducing As accumulation in rice grains.

Keywords:
As(III) / DMA / GSH-AsA circle / salicylic acid
Source:
Journal of Plant Nutrition, 29-12-2022, 1-16
Publisher:
  • Taylor & Francis
Funding / projects:
  • National Key Research and Development Program of China (2018YFD0800202)
  • Fundamental Research Funds for the Central Universities (226-2022-00084).

DOI: 10.1080/01904167.2022.2160752

ISSN: 1532-4087

[ Google Scholar ]
URI
http://rimsi.imsi.bg.ac.rs/handle/123456789/1788
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za multidisciplinarna istraživanja
TY  - JOUR
AU  - Jiang, Yishun
AU  - Gao, Zixiang
AU  - Zhang, Xinyuan
AU  - Nikolic, Miroslav
AU  - Liang, Yongchao
PY  - 2022-12-29
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1788
AB  - Salicylic acid (SA) is a phenolic phytohormone that plays a vital role in plant development and mediates plant responses to plenty of adversity including arsenic (As) stress. The effects of exogenous addition of SA on As tolerance and As accumulation were assessed in two cultivars of rice (Oryza sativa L.) Nipponbare and Zhongzao 39, hydroponically grown with Kimura B nutrient solution under arsenite [As (III)] and dimethylarsonic acid (DMA) exposure. In the second ex-periment, the influence of soaking seed with SA on As uptake and As damages was investigated in rice (cv. Nipponbare) exposed to As (III) and DMA. The results showed that exogenous addition of SA sig- nificantly decreased the concentrations of hydrogen peroxide (H2O2) and malondialdehyde (MDA) in both As (III)- and DMA-stressed rice, indicating that SA alleviates As-induced oxidative damages in rice. SA increased the activity of antioxidant enzymes and, moreover, increased the relative amount of glutathione (GSH) and ascorbate (ASA) by accelerating the GSH- ASA circle system. Exogenous addition of SA significantly decreased the As concentration in both roots and shoots of rice under As(III) stress by influ- encing the expression of genes encoding As transporters, viz. OsLsi1, OsLsi2. The addition of SA significantly decreased the As content in shoots under DMA stress, which may be related to the expression of OsPTR7 involved in shoot xylem unloading. This finding may foster a novel perspec- tive for reducing As accumulation in rice grains.
PB  - Taylor & Francis
T2  - Journal of Plant Nutrition
T1  - Effects of exogenous salicylic acid on alleviation of arsenic-induced oxidative damages in rice
EP  - 16
SP  - 1
DO  - 10.1080/01904167.2022.2160752
ER  - 
@article{
author = "Jiang, Yishun and Gao, Zixiang and Zhang, Xinyuan and Nikolic, Miroslav and Liang, Yongchao",
year = "2022-12-29",
abstract = "Salicylic acid (SA) is a phenolic phytohormone that plays a vital role in plant development and mediates plant responses to plenty of adversity including arsenic (As) stress. The effects of exogenous addition of SA on As tolerance and As accumulation were assessed in two cultivars of rice (Oryza sativa L.) Nipponbare and Zhongzao 39, hydroponically grown with Kimura B nutrient solution under arsenite [As (III)] and dimethylarsonic acid (DMA) exposure. In the second ex-periment, the influence of soaking seed with SA on As uptake and As damages was investigated in rice (cv. Nipponbare) exposed to As (III) and DMA. The results showed that exogenous addition of SA sig- nificantly decreased the concentrations of hydrogen peroxide (H2O2) and malondialdehyde (MDA) in both As (III)- and DMA-stressed rice, indicating that SA alleviates As-induced oxidative damages in rice. SA increased the activity of antioxidant enzymes and, moreover, increased the relative amount of glutathione (GSH) and ascorbate (ASA) by accelerating the GSH- ASA circle system. Exogenous addition of SA significantly decreased the As concentration in both roots and shoots of rice under As(III) stress by influ- encing the expression of genes encoding As transporters, viz. OsLsi1, OsLsi2. The addition of SA significantly decreased the As content in shoots under DMA stress, which may be related to the expression of OsPTR7 involved in shoot xylem unloading. This finding may foster a novel perspec- tive for reducing As accumulation in rice grains.",
publisher = "Taylor & Francis",
journal = "Journal of Plant Nutrition",
title = "Effects of exogenous salicylic acid on alleviation of arsenic-induced oxidative damages in rice",
pages = "16-1",
doi = "10.1080/01904167.2022.2160752"
}
Jiang, Y., Gao, Z., Zhang, X., Nikolic, M.,& Liang, Y.. (2022-12-29). Effects of exogenous salicylic acid on alleviation of arsenic-induced oxidative damages in rice. in Journal of Plant Nutrition
Taylor & Francis., 1-16.
https://doi.org/10.1080/01904167.2022.2160752
Jiang Y, Gao Z, Zhang X, Nikolic M, Liang Y. Effects of exogenous salicylic acid on alleviation of arsenic-induced oxidative damages in rice. in Journal of Plant Nutrition. 2022;:1-16.
doi:10.1080/01904167.2022.2160752 .
Jiang, Yishun, Gao, Zixiang, Zhang, Xinyuan, Nikolic, Miroslav, Liang, Yongchao, "Effects of exogenous salicylic acid on alleviation of arsenic-induced oxidative damages in rice" in Journal of Plant Nutrition (2022-12-29):1-16,
https://doi.org/10.1080/01904167.2022.2160752 . .

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB