RIMSI - Repository of Institute for Multidisciplinary Research
University of Belgrade - Institute for Multidisciplinary Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cloning and characterization of new raw starch digestion α-amylase from thermophilic Anoxybacillus sp.

Thumbnail
2022
bitstream_4476.pdf (334.5Kb)
Authors
Tomić, Katarina
Šokrda Slavić, Marinela
Kojić, Milan
Stanisavljević, Nemanja
Nikolić, Stefan
Vujčić, Zoran
Conference object (Published version)
Metadata
Show full item record
Abstract
One of the most abundant natural polymers with multidimensional and multifaceted application is starch. Due to energy fuel sustainability concern, the world is focusing on renewable energy including energy from renewable biological materials like starch1. The importance of the enzymatic hydrolysis of granular starch below the temperature of gelatinization has been well recognized, mainly due to energy savings and the effective utilization of biomass, which reduces the overall cost of starch processing2. A new α-amylase gene (Amy35) was cloned from newly isolated thermophilic Anoxybacillus sp. ST4 and expressed in Escherichia coli. The purified recombinant α-amylase had an wide pH optimum range from 4.5 to 8.5 and optimum temperature of 75°C. The enzyme retained 95% of its activity after 3h of incubation at 50 and 60°C. Hydrolysis rates of potato, horseradish and corn starches, at 1% concentration were 20, 70 and 65%, respectively, in a period of 16 h. Analysis of the enzyme properties ...proved its high efficacy for the digestion of diverse raw starches below gelatinization temperature and, therefore, its potential commercial value for use as an industrial enzyme.

Keywords:
α-amylase / Anoxybacillus sp. / starch processing
Source:
Serbian Biochemical Society Eleventh Conference, 2022, 147-
Publisher:
  • Faculty of Chemistry, Serbian Biochemical Society
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200168 (University of Belgrade, Faculty of Chemistry) (RS-200168)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200288 (Innovation Center of the Faculty of Chemistry) (RS-200288)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200042 (University of Belgrade, Institute of Molecular Genetics and Genetic Engineering) (RS-200042)
  • 451-03-68/2022-14/300026

ISBN: 978-86-7220-124-6

[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_rimsi_1771
URI
http://rimsi.imsi.bg.ac.rs/handle/123456789/1771
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za multidisciplinarna istraživanja
TY  - CONF
AU  - Tomić, Katarina
AU  - Šokrda Slavić, Marinela
AU  - Kojić, Milan
AU  - Stanisavljević, Nemanja
AU  - Nikolić, Stefan
AU  - Vujčić, Zoran
PY  - 2022
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1771
AB  - One of the most abundant natural polymers with multidimensional and multifaceted application is starch. Due to energy fuel sustainability concern, the world is focusing on renewable energy including energy from renewable biological materials like starch1. The importance of the enzymatic hydrolysis of granular starch below the temperature of gelatinization has been well recognized, mainly due to energy savings and the effective utilization of biomass, which reduces the overall cost of starch processing2. A new α-amylase gene (Amy35) was cloned from newly isolated thermophilic Anoxybacillus sp. ST4 and expressed in Escherichia coli. The purified recombinant α-amylase had an wide pH optimum range from 4.5 to 8.5 and optimum temperature of 75°C. The enzyme retained 95% of its activity after 3h of incubation at 50 and 60°C. Hydrolysis rates of potato, horseradish and corn starches, at 1% concentration were 20, 70 and 65%, respectively, in a period of 16 h. Analysis of the enzyme properties proved its high efficacy for the digestion of diverse raw starches below gelatinization temperature and, therefore, its potential commercial value for use as an industrial enzyme.
PB  - Faculty of Chemistry, Serbian Biochemical Society
C3  - Serbian Biochemical Society Eleventh Conference
T1  - Cloning and characterization of new raw starch digestion α-amylase from thermophilic Anoxybacillus sp.
SP  - 147
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_1771
ER  - 
@conference{
author = "Tomić, Katarina and Šokrda Slavić, Marinela and Kojić, Milan and Stanisavljević, Nemanja and Nikolić, Stefan and Vujčić, Zoran",
year = "2022",
abstract = "One of the most abundant natural polymers with multidimensional and multifaceted application is starch. Due to energy fuel sustainability concern, the world is focusing on renewable energy including energy from renewable biological materials like starch1. The importance of the enzymatic hydrolysis of granular starch below the temperature of gelatinization has been well recognized, mainly due to energy savings and the effective utilization of biomass, which reduces the overall cost of starch processing2. A new α-amylase gene (Amy35) was cloned from newly isolated thermophilic Anoxybacillus sp. ST4 and expressed in Escherichia coli. The purified recombinant α-amylase had an wide pH optimum range from 4.5 to 8.5 and optimum temperature of 75°C. The enzyme retained 95% of its activity after 3h of incubation at 50 and 60°C. Hydrolysis rates of potato, horseradish and corn starches, at 1% concentration were 20, 70 and 65%, respectively, in a period of 16 h. Analysis of the enzyme properties proved its high efficacy for the digestion of diverse raw starches below gelatinization temperature and, therefore, its potential commercial value for use as an industrial enzyme.",
publisher = "Faculty of Chemistry, Serbian Biochemical Society",
journal = "Serbian Biochemical Society Eleventh Conference",
title = "Cloning and characterization of new raw starch digestion α-amylase from thermophilic Anoxybacillus sp.",
pages = "147",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_1771"
}
Tomić, K., Šokrda Slavić, M., Kojić, M., Stanisavljević, N., Nikolić, S.,& Vujčić, Z.. (2022). Cloning and characterization of new raw starch digestion α-amylase from thermophilic Anoxybacillus sp.. in Serbian Biochemical Society Eleventh Conference
Faculty of Chemistry, Serbian Biochemical Society., 147.
https://hdl.handle.net/21.15107/rcub_rimsi_1771
Tomić K, Šokrda Slavić M, Kojić M, Stanisavljević N, Nikolić S, Vujčić Z. Cloning and characterization of new raw starch digestion α-amylase from thermophilic Anoxybacillus sp.. in Serbian Biochemical Society Eleventh Conference. 2022;:147.
https://hdl.handle.net/21.15107/rcub_rimsi_1771 .
Tomić, Katarina, Šokrda Slavić, Marinela, Kojić, Milan, Stanisavljević, Nemanja, Nikolić, Stefan, Vujčić, Zoran, "Cloning and characterization of new raw starch digestion α-amylase from thermophilic Anoxybacillus sp." in Serbian Biochemical Society Eleventh Conference (2022):147,
https://hdl.handle.net/21.15107/rcub_rimsi_1771 .

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB