RIMSI - Repository of Institute for Multidisciplinary Research
University of Belgrade - Institute for Multidisciplinary Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dilatometer as a scientific tool

Thumbnail
2017
Download PDF (271.6Kb)
Authors
Labus, Nebojša J.
Pavlović, Vladimir B
Vasiljević, Zorka Z
Nikolić, Maria Vesna
Conference object (Published version)
Metadata
Show full item record
Abstract
Dilatometry is defined as the dimensional change of a solid specimen recorded during temperature schedule. Set of data obtained in such a manner are known as dilatogram. Dilatograms for different sort of materials represent an important trace for deduction of other materials properties than volume. Property parameters directly appointable from the dilatogram graph are: thermal expansion coefficient for the temperature interval, glass transition temperature, phasetransition temperature, sintering shrinkage and sintering temperature for maximal shrinkage rate, crystallization point temperature for amorphous bulk metallic glasses, defect annealing temperature. From dilatometric data we can also calculate more complex values such as the sintering activation energy, deduce sintering kinetic mechanisms, for the phase transition kinetic parameters and phase composition, defect concentration, materials thermal expansion coefficient at a particular temperature, solid state reaction kinetic para...meters. Dilatometric devices regarding the construction are divided into contact and non contact ones, for they physically exert force on the specimen or not. Furthermore, contact dilatometric devices can be ascribed due to their construction as vertical and horizontal. This categorization leads to different and changeable contact force on the specimen. Vertical dilatometers usually use higher and temporarily changeable forces applied on the specimen. They can be, with suitable equipment, used for other mechanical properties determination than expansion, such as compressibility, tension or inflection. Non contact devices are divided into interferometric and optical. Interferometric ones use a two laser beams construction where for the length change measuring they count the number of wave lengths that are formed as a path difference between two beams. Optical devices, however, uses monochromatic light projected on the specimen that forms shadow recorded on an optical sensor. Obtained images are then analyzed for the specimen`s dimensional change.

Keywords:
dilatometry / dilatometric devices
Source:
Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017, 2017, 49-49
Publisher:
  • Belgrade : Serbian Ceramic Society
Funding / projects:
  • Directed synthesis, structure and properties of multifunctional materials (RS-172057)

ISBN: 978-86-915627-5-5

[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_dais_3681
URI
https://dais.sanu.ac.rs/123456789/3681
http://rimsi.imsi.bg.ac.rs/handle/123456789/1637
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za multidisciplinarna istraživanja
TY  - CONF
AU  - Labus, Nebojša J.
AU  - Pavlović, Vladimir B
AU  - Vasiljević, Zorka Z
AU  - Nikolić, Maria Vesna
PY  - 2017
UR  - https://dais.sanu.ac.rs/123456789/3681
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1637
AB  - Dilatometry is defined as the dimensional change of a solid specimen recorded during temperature schedule. Set of data obtained in such a manner are known as dilatogram. Dilatograms for different sort of materials represent an important trace for deduction of other materials properties than volume. Property parameters directly appointable from the dilatogram graph are: thermal expansion coefficient for the temperature interval, glass transition temperature, phasetransition temperature, sintering shrinkage and sintering temperature for maximal shrinkage rate, crystallization point temperature for amorphous bulk metallic glasses, defect annealing temperature. From dilatometric data we can also calculate more complex values such as the sintering activation energy, deduce sintering kinetic mechanisms, for the phase transition kinetic parameters and phase composition, defect concentration, materials thermal expansion coefficient at a particular temperature, solid state reaction kinetic parameters. Dilatometric devices regarding the construction are divided into contact and non contact ones, for they physically exert force on the specimen or not. Furthermore, contact dilatometric devices can be ascribed due to their construction as vertical and horizontal. This categorization leads to different and changeable contact force on the specimen. Vertical dilatometers usually use higher and temporarily changeable forces applied on the specimen. They can be, with suitable equipment, used for other mechanical properties determination than expansion, such as compressibility, tension or inflection. Non contact devices are divided into interferometric and optical. Interferometric ones use a two laser beams construction where for the length change measuring they count the number of wave lengths that are formed as a path difference between two beams. Optical devices, however, uses monochromatic light projected on the specimen that forms shadow recorded on an optical sensor. Obtained images are then analyzed for the specimen`s dimensional change.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017
T1  - Dilatometer as a scientific tool
EP  - 49
SP  - 49
UR  - https://hdl.handle.net/21.15107/rcub_dais_3681
ER  - 
@conference{
author = "Labus, Nebojša J. and Pavlović, Vladimir B and Vasiljević, Zorka Z and Nikolić, Maria Vesna",
year = "2017",
abstract = "Dilatometry is defined as the dimensional change of a solid specimen recorded during temperature schedule. Set of data obtained in such a manner are known as dilatogram. Dilatograms for different sort of materials represent an important trace for deduction of other materials properties than volume. Property parameters directly appointable from the dilatogram graph are: thermal expansion coefficient for the temperature interval, glass transition temperature, phasetransition temperature, sintering shrinkage and sintering temperature for maximal shrinkage rate, crystallization point temperature for amorphous bulk metallic glasses, defect annealing temperature. From dilatometric data we can also calculate more complex values such as the sintering activation energy, deduce sintering kinetic mechanisms, for the phase transition kinetic parameters and phase composition, defect concentration, materials thermal expansion coefficient at a particular temperature, solid state reaction kinetic parameters. Dilatometric devices regarding the construction are divided into contact and non contact ones, for they physically exert force on the specimen or not. Furthermore, contact dilatometric devices can be ascribed due to their construction as vertical and horizontal. This categorization leads to different and changeable contact force on the specimen. Vertical dilatometers usually use higher and temporarily changeable forces applied on the specimen. They can be, with suitable equipment, used for other mechanical properties determination than expansion, such as compressibility, tension or inflection. Non contact devices are divided into interferometric and optical. Interferometric ones use a two laser beams construction where for the length change measuring they count the number of wave lengths that are formed as a path difference between two beams. Optical devices, however, uses monochromatic light projected on the specimen that forms shadow recorded on an optical sensor. Obtained images are then analyzed for the specimen`s dimensional change.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017",
title = "Dilatometer as a scientific tool",
pages = "49-49",
url = "https://hdl.handle.net/21.15107/rcub_dais_3681"
}
Labus, N. J., Pavlović, V. B., Vasiljević, Z. Z.,& Nikolić, M. V.. (2017). Dilatometer as a scientific tool. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017
Belgrade : Serbian Ceramic Society., 49-49.
https://hdl.handle.net/21.15107/rcub_dais_3681
Labus NJ, Pavlović VB, Vasiljević ZZ, Nikolić MV. Dilatometer as a scientific tool. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017. 2017;:49-49.
https://hdl.handle.net/21.15107/rcub_dais_3681 .
Labus, Nebojša J., Pavlović, Vladimir B, Vasiljević, Zorka Z, Nikolić, Maria Vesna, "Dilatometer as a scientific tool" in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017 (2017):49-49,
https://hdl.handle.net/21.15107/rcub_dais_3681 .

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB