RIMSI - Repository of Institute for Multidisciplinary Research
University of Belgrade - Institute for Multidisciplinary Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthesis, structure and electrochemical performance of NiMn2O4

Thumbnail
2021
Download PDF (295.5Kb)
Authors
Dojčinović, Milena
Vasiljević, Zorka Z
Tadić, Nenad B.
Krstić, Jugoslav B.
Marković, Smilja
Spreitzer, Matjaž
Kovač, Janez
Nikolić, Maria Vesna
Conference object (Published version)
Metadata
Show full item record
Abstract
NiMn2O4, with a cubic spinel structure and numerous and various applications in modern technology, were synthesized with two synthetic routes: sol-gel combustion method with glycine as fuel and electrospinning method with polyvinylpyrrolidone (PVP). Both amorphous powders from sol-gel synthesis and as-spun fibers from electrospinning synthesis were calcined, electrospun fibers at 400 °C and the sol-gel synthesized powders at 800 °C. Electrospun fibers were previously characterized with DTA-TGA to investigate the influence of thermal process on a polymer fiber.The obtained powders were characterized accordingly. Structural analysis was done via X-ray diffraction (XRD) and results show spinel structure with no impurity. The texture and morphology was investigated via N2 physisorption and transmission electron microscopy (TEM), respectively. Chemical states of elements were investigated by X-ray photoelectron spectroscopy (XPS). The electrochemical performance of the synthesized materials... as supercapacitors was tested via cyclic voltammetry (CV), electric impedance spectroscopy (EIS), and chronopotentiometry (CP) to aquire galvanostatic charge-discharge (GCD) curves. Experiments were done in 6 M KOH solution with nickel foam as a working electrode. The results show good electrochemical capacity circa 200 F/g, with the potential for further structural improvement of the materials.

Keywords:
NiMn2O4 / sol-gel combustion / electrospinning / supercapacitors
Source:
Programme and book of abstracts / 14th ECerS Conference for Young Scientists in Ceramics (CYSC-2021), October 20-23, 2021, Novi Sad, 2021, 81-81
Publisher:
  • Novi Sad : Faculty of Technology
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200175 (Institute of Technical Sciences of SASA, Belgrade) (RS-200175)

ISBN: 978-86-6253-136-0

[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_dais_12397
URI
https://dais.sanu.ac.rs/123456789/12397
http://rimsi.imsi.bg.ac.rs/handle/123456789/1630
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za multidisciplinarna istraživanja
TY  - CONF
AU  - Dojčinović, Milena
AU  - Vasiljević, Zorka Z
AU  - Tadić, Nenad B.
AU  - Krstić, Jugoslav B.
AU  - Marković, Smilja
AU  - Spreitzer, Matjaž
AU  - Kovač, Janez
AU  - Nikolić, Maria Vesna
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/12397
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1630
AB  - NiMn2O4, with a cubic spinel structure and numerous and various applications in modern technology, were synthesized with two synthetic routes: sol-gel combustion method with glycine as fuel and electrospinning method with polyvinylpyrrolidone (PVP). Both amorphous powders from sol-gel synthesis and as-spun fibers from electrospinning synthesis were calcined, electrospun fibers at 400 °C and the sol-gel synthesized powders at 800 °C. Electrospun fibers were previously characterized with DTA-TGA to investigate the influence of thermal process on a polymer fiber.The obtained powders were characterized accordingly. Structural analysis was done via X-ray diffraction (XRD) and results show spinel structure with no impurity. The texture and morphology was investigated via N2 physisorption and transmission electron microscopy (TEM), respectively. Chemical states of elements were investigated by X-ray photoelectron spectroscopy (XPS). The electrochemical performance of the synthesized materials as supercapacitors was tested via cyclic voltammetry (CV), electric impedance spectroscopy (EIS), and chronopotentiometry (CP) to aquire galvanostatic charge-discharge (GCD) curves. Experiments were done in 6 M KOH solution with nickel foam as a working electrode. The results show good electrochemical capacity circa 200 F/g, with the potential for further structural improvement of the materials.
PB  - Novi Sad : Faculty of Technology
C3  - Programme and book of abstracts / 14th ECerS Conference for Young Scientists in Ceramics (CYSC-2021), October 20-23, 2021, Novi Sad
T1  - Synthesis, structure and electrochemical performance of NiMn2O4
EP  - 81
SP  - 81
UR  - https://hdl.handle.net/21.15107/rcub_dais_12397
ER  - 
@conference{
author = "Dojčinović, Milena and Vasiljević, Zorka Z and Tadić, Nenad B. and Krstić, Jugoslav B. and Marković, Smilja and Spreitzer, Matjaž and Kovač, Janez and Nikolić, Maria Vesna",
year = "2021",
abstract = "NiMn2O4, with a cubic spinel structure and numerous and various applications in modern technology, were synthesized with two synthetic routes: sol-gel combustion method with glycine as fuel and electrospinning method with polyvinylpyrrolidone (PVP). Both amorphous powders from sol-gel synthesis and as-spun fibers from electrospinning synthesis were calcined, electrospun fibers at 400 °C and the sol-gel synthesized powders at 800 °C. Electrospun fibers were previously characterized with DTA-TGA to investigate the influence of thermal process on a polymer fiber.The obtained powders were characterized accordingly. Structural analysis was done via X-ray diffraction (XRD) and results show spinel structure with no impurity. The texture and morphology was investigated via N2 physisorption and transmission electron microscopy (TEM), respectively. Chemical states of elements were investigated by X-ray photoelectron spectroscopy (XPS). The electrochemical performance of the synthesized materials as supercapacitors was tested via cyclic voltammetry (CV), electric impedance spectroscopy (EIS), and chronopotentiometry (CP) to aquire galvanostatic charge-discharge (GCD) curves. Experiments were done in 6 M KOH solution with nickel foam as a working electrode. The results show good electrochemical capacity circa 200 F/g, with the potential for further structural improvement of the materials.",
publisher = "Novi Sad : Faculty of Technology",
journal = "Programme and book of abstracts / 14th ECerS Conference for Young Scientists in Ceramics (CYSC-2021), October 20-23, 2021, Novi Sad",
title = "Synthesis, structure and electrochemical performance of NiMn2O4",
pages = "81-81",
url = "https://hdl.handle.net/21.15107/rcub_dais_12397"
}
Dojčinović, M., Vasiljević, Z. Z., Tadić, N. B., Krstić, J. B., Marković, S., Spreitzer, M., Kovač, J.,& Nikolić, M. V.. (2021). Synthesis, structure and electrochemical performance of NiMn2O4. in Programme and book of abstracts / 14th ECerS Conference for Young Scientists in Ceramics (CYSC-2021), October 20-23, 2021, Novi Sad
Novi Sad : Faculty of Technology., 81-81.
https://hdl.handle.net/21.15107/rcub_dais_12397
Dojčinović M, Vasiljević ZZ, Tadić NB, Krstić JB, Marković S, Spreitzer M, Kovač J, Nikolić MV. Synthesis, structure and electrochemical performance of NiMn2O4. in Programme and book of abstracts / 14th ECerS Conference for Young Scientists in Ceramics (CYSC-2021), October 20-23, 2021, Novi Sad. 2021;:81-81.
https://hdl.handle.net/21.15107/rcub_dais_12397 .
Dojčinović, Milena, Vasiljević, Zorka Z, Tadić, Nenad B., Krstić, Jugoslav B., Marković, Smilja, Spreitzer, Matjaž, Kovač, Janez, Nikolić, Maria Vesna, "Synthesis, structure and electrochemical performance of NiMn2O4" in Programme and book of abstracts / 14th ECerS Conference for Young Scientists in Ceramics (CYSC-2021), October 20-23, 2021, Novi Sad (2021):81-81,
https://hdl.handle.net/21.15107/rcub_dais_12397 .

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB