RIMSI - Repository of Institute for Multidisciplinary Research
University of Belgrade - Institute for Multidisciplinary Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Structure and photocatalytic properties of sol-gel synthesized pseudobrookite

Thumbnail
2019
Download PDF (249.9Kb)
Authors
Vasiljević, Zorka Z
Dojčinović, Milena
Janković Častvan, Ivona
Vujančević, Jelena
Tadić, Nenad B.
Nikolić, Maria Vesna
Conference object (Published version)
Metadata
Show full item record
Abstract
Fe2TiO5 nanopartcles were synthesized by modified sol-gel method with aid ofFe(NO3)3 9H2O and Ti(OC3H7)4 as starting reagents, oxalic acid as chilate agent and cetyltrimethylammonium bromide as surfactant. The aim of this study was to asses the photocatalytic degradaton of the antibiotic Oxytetracycline (OTC) using visible light irradiation. As prepared nanoparticles were characterized by XRD, BET, FESEM and UV-vis DRS. The optimal operating conditions of oxytetracycline photocatalytic degradation were achived by changing the pH of the solution and changing the concentration of photocatalyst.
Keywords:
Fe2TiO5 / pseudobrookite / photocatalysis / sol-gel synthesis
Source:
Programme and book of abstracts / 13th Conference for Young Scientists in Ceramics (CYSC-2017), October 16-19, 2019, Novi Sad, 2019, 133-133
Publisher:
  • Novi Sad : Faculty of Technology
Funding / projects:
  • Zero- to Three-Dimensional Nanostructures for Application in Electronics and Renewable Energy Sources: Synthesis, Characterization and Processing (RS-45007)

ISBN: 978-86-6253-104-9

[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_dais_6988
URI
https://dais.sanu.ac.rs/123456789/6988
http://rimsi.imsi.bg.ac.rs/handle/123456789/1627
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za multidisciplinarna istraživanja
TY  - CONF
AU  - Vasiljević, Zorka Z
AU  - Dojčinović, Milena
AU  - Janković Častvan, Ivona
AU  - Vujančević, Jelena
AU  - Tadić, Nenad B.
AU  - Nikolić, Maria Vesna
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/6988
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1627
AB  - Fe2TiO5 nanopartcles were synthesized by modified sol-gel method with aid ofFe(NO3)3 9H2O and Ti(OC3H7)4 as starting reagents, oxalic acid as chilate agent and cetyltrimethylammonium bromide as surfactant. The aim of this study was to asses the photocatalytic degradaton of the antibiotic Oxytetracycline (OTC) using visible light irradiation. As prepared nanoparticles were characterized by XRD, BET, FESEM and UV-vis DRS. The optimal operating conditions of oxytetracycline photocatalytic degradation were achived by changing the pH of the solution and changing the concentration of photocatalyst.
PB  - Novi Sad : Faculty of Technology
C3  - Programme and book of abstracts / 13th Conference for Young Scientists in Ceramics (CYSC-2017), October 16-19, 2019, Novi Sad
T1  - Structure and photocatalytic properties of sol-gel synthesized pseudobrookite
EP  - 133
SP  - 133
UR  - https://hdl.handle.net/21.15107/rcub_dais_6988
ER  - 
@conference{
author = "Vasiljević, Zorka Z and Dojčinović, Milena and Janković Častvan, Ivona and Vujančević, Jelena and Tadić, Nenad B. and Nikolić, Maria Vesna",
year = "2019",
abstract = "Fe2TiO5 nanopartcles were synthesized by modified sol-gel method with aid ofFe(NO3)3 9H2O and Ti(OC3H7)4 as starting reagents, oxalic acid as chilate agent and cetyltrimethylammonium bromide as surfactant. The aim of this study was to asses the photocatalytic degradaton of the antibiotic Oxytetracycline (OTC) using visible light irradiation. As prepared nanoparticles were characterized by XRD, BET, FESEM and UV-vis DRS. The optimal operating conditions of oxytetracycline photocatalytic degradation were achived by changing the pH of the solution and changing the concentration of photocatalyst.",
publisher = "Novi Sad : Faculty of Technology",
journal = "Programme and book of abstracts / 13th Conference for Young Scientists in Ceramics (CYSC-2017), October 16-19, 2019, Novi Sad",
title = "Structure and photocatalytic properties of sol-gel synthesized pseudobrookite",
pages = "133-133",
url = "https://hdl.handle.net/21.15107/rcub_dais_6988"
}
Vasiljević, Z. Z., Dojčinović, M., Janković Častvan, I., Vujančević, J., Tadić, N. B.,& Nikolić, M. V.. (2019). Structure and photocatalytic properties of sol-gel synthesized pseudobrookite. in Programme and book of abstracts / 13th Conference for Young Scientists in Ceramics (CYSC-2017), October 16-19, 2019, Novi Sad
Novi Sad : Faculty of Technology., 133-133.
https://hdl.handle.net/21.15107/rcub_dais_6988
Vasiljević ZZ, Dojčinović M, Janković Častvan I, Vujančević J, Tadić NB, Nikolić MV. Structure and photocatalytic properties of sol-gel synthesized pseudobrookite. in Programme and book of abstracts / 13th Conference for Young Scientists in Ceramics (CYSC-2017), October 16-19, 2019, Novi Sad. 2019;:133-133.
https://hdl.handle.net/21.15107/rcub_dais_6988 .
Vasiljević, Zorka Z, Dojčinović, Milena, Janković Častvan, Ivona, Vujančević, Jelena, Tadić, Nenad B., Nikolić, Maria Vesna, "Structure and photocatalytic properties of sol-gel synthesized pseudobrookite" in Programme and book of abstracts / 13th Conference for Young Scientists in Ceramics (CYSC-2017), October 16-19, 2019, Novi Sad (2019):133-133,
https://hdl.handle.net/21.15107/rcub_dais_6988 .

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB