RIMSI - Repository of Institute for Multidisciplinary Research
University of Belgrade - Institute for Multidisciplinary Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Humidity sensing potential of iron manganite (FeMNO3)

Thumbnail
2019
Download PDF (1.219Mb)
Authors
Nikolić, Maria Vesna
Luković, Miloljub
Vasiljević, Zorka Z
Dojčinović, Milena
Labus, Nebojša J.
Conference object (Published version)
Metadata
Show full item record
Abstract
Though different metal oxide systems have been investigated and applied in humidity sensing as resistive or capacitive ceramic humidity sensors new materials remain the subject of much research. Iron manganite (FeMnO3) has a bixybyite type structure with the cubic space group. Iron manganite powder was obtained by solid state synthesis (milling in a planetary ball mill, calcination at 1000°C for 2 hours, milling) of starting hematite (Fe2O3) and manganese carbonate (MnCO3) powders mixed in a suitable ratio. Bulk samples were obtained by sintering green samples of pressed powder 8 mm in diameter at 1000oC for 4 hours. Thick film paste was obtained by mixing the powder with organic vehicles. Four layers were screen printed on test interdigitated electrodes on alumina substrate and fired at 900oC for 6 h. XRD analysis of bulk and thick film samples confirmed the formation of iron manganite with a perovskite structure. Scanning electron microscopy (SEM) analysis of freshly cleaved bulk sam...ples showed a network of interconnected grains and pores. A similar structure was observed for the thick film sample surface. Change of complex impedance was monitored in a humidity chamber in the relative humidity range 30-90% at the working temperature of 25°C and frequency range 42 Hz to 1 MHz. In bulk samples at 100 Hz the impedance decreased from 32 (RH 30%) to 3 MΩ (RH 90%), while in thick film samples on test interdigitated electrodes it decreased from 8.24 (RH 30%) to 0.87 MΩ ((RH 90%). The thick film sensor response and recovery was several seconds and a low hysteresis value of 2.78% was obtained showing that iron manganite can successfully be applied for humidity sensing applications.

Keywords:
iron manganite / FeMnO3 / humidity sensing / ball milling / sintering
Source:
Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest, 2019, 16-17
Publisher:
  • Budapest : [s. n.]
Funding / projects:
  • Zero- to Three-Dimensional Nanostructures for Application in Electronics and Renewable Energy Sources: Synthesis, Characterization and Processing (RS-45007)
[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_dais_6999
URI
https://dais.sanu.ac.rs/123456789/6999
http://rimsi.imsi.bg.ac.rs/handle/123456789/1621
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za multidisciplinarna istraživanja
TY  - CONF
AU  - Nikolić, Maria Vesna
AU  - Luković, Miloljub
AU  - Vasiljević, Zorka Z
AU  - Dojčinović, Milena
AU  - Labus, Nebojša J.
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/6999
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1621
AB  - Though different metal oxide systems have been investigated and applied in humidity sensing as resistive or capacitive ceramic humidity sensors new materials remain the subject of much research. Iron manganite (FeMnO3) has a bixybyite type structure with the cubic space group. Iron manganite powder was obtained by solid state synthesis (milling in a planetary ball mill, calcination at 1000°C for 2 hours, milling) of starting hematite (Fe2O3) and manganese carbonate (MnCO3) powders mixed in a suitable ratio. Bulk samples were obtained by sintering green samples of pressed powder 8 mm in diameter at 1000oC for 4 hours. Thick film paste was obtained by mixing the powder with organic vehicles. Four layers were screen printed on test interdigitated electrodes on alumina substrate and fired at 900oC for 6 h. XRD analysis of bulk and thick film samples confirmed the formation of iron manganite with a perovskite structure. Scanning electron microscopy (SEM) analysis of freshly cleaved bulk samples showed a network of interconnected grains and pores. A similar structure was observed for the thick film sample surface. Change of complex impedance was monitored in a humidity chamber in the relative humidity range 30-90% at the working temperature of 25°C and frequency range 42 Hz to 1 MHz. In bulk samples at 100 Hz the impedance decreased from 32 (RH 30%) to 3 MΩ (RH 90%), while in thick film samples on test interdigitated electrodes it decreased from 8.24 (RH 30%) to 0.87 MΩ ((RH 90%). The thick film sensor response and recovery was several seconds and a low hysteresis value of 2.78% was obtained showing that iron manganite can successfully be applied for humidity sensing applications.
PB  - Budapest : [s. n.]
C3  - Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest
T1  - Humidity sensing potential of iron manganite (FeMNO3)
EP  - 17
SP  - 16
UR  - https://hdl.handle.net/21.15107/rcub_dais_6999
ER  - 
@conference{
author = "Nikolić, Maria Vesna and Luković, Miloljub and Vasiljević, Zorka Z and Dojčinović, Milena and Labus, Nebojša J.",
year = "2019",
abstract = "Though different metal oxide systems have been investigated and applied in humidity sensing as resistive or capacitive ceramic humidity sensors new materials remain the subject of much research. Iron manganite (FeMnO3) has a bixybyite type structure with the cubic space group. Iron manganite powder was obtained by solid state synthesis (milling in a planetary ball mill, calcination at 1000°C for 2 hours, milling) of starting hematite (Fe2O3) and manganese carbonate (MnCO3) powders mixed in a suitable ratio. Bulk samples were obtained by sintering green samples of pressed powder 8 mm in diameter at 1000oC for 4 hours. Thick film paste was obtained by mixing the powder with organic vehicles. Four layers were screen printed on test interdigitated electrodes on alumina substrate and fired at 900oC for 6 h. XRD analysis of bulk and thick film samples confirmed the formation of iron manganite with a perovskite structure. Scanning electron microscopy (SEM) analysis of freshly cleaved bulk samples showed a network of interconnected grains and pores. A similar structure was observed for the thick film sample surface. Change of complex impedance was monitored in a humidity chamber in the relative humidity range 30-90% at the working temperature of 25°C and frequency range 42 Hz to 1 MHz. In bulk samples at 100 Hz the impedance decreased from 32 (RH 30%) to 3 MΩ (RH 90%), while in thick film samples on test interdigitated electrodes it decreased from 8.24 (RH 30%) to 0.87 MΩ ((RH 90%). The thick film sensor response and recovery was several seconds and a low hysteresis value of 2.78% was obtained showing that iron manganite can successfully be applied for humidity sensing applications.",
publisher = "Budapest : [s. n.]",
journal = "Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest",
title = "Humidity sensing potential of iron manganite (FeMNO3)",
pages = "17-16",
url = "https://hdl.handle.net/21.15107/rcub_dais_6999"
}
Nikolić, M. V., Luković, M., Vasiljević, Z. Z., Dojčinović, M.,& Labus, N. J.. (2019). Humidity sensing potential of iron manganite (FeMNO3). in Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest
Budapest : [s. n.]., 16-17.
https://hdl.handle.net/21.15107/rcub_dais_6999
Nikolić MV, Luković M, Vasiljević ZZ, Dojčinović M, Labus NJ. Humidity sensing potential of iron manganite (FeMNO3). in Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest. 2019;:16-17.
https://hdl.handle.net/21.15107/rcub_dais_6999 .
Nikolić, Maria Vesna, Luković, Miloljub, Vasiljević, Zorka Z, Dojčinović, Milena, Labus, Nebojša J., "Humidity sensing potential of iron manganite (FeMNO3)" in Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest (2019):16-17,
https://hdl.handle.net/21.15107/rcub_dais_6999 .

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB