RIMSI - Repository of Institute for Multidisciplinary Research
University of Belgrade - Institute for Multidisciplinary Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Alginate-derived activated carbon hybridized with NiMn2O4 for use in supercapacitors

Thumbnail
2022
bitstream_4002.pdf (1.440Mb)
Authors
Dojčinović, Milena
Vasiljević, Zorka Z
Tadic, Nenad
Krstic, Jugoslav
Nikolić, Maria Vesna
Conference object (Published version)
Metadata
Show full item record
Abstract
Transition metal oxides (TMOs) are promising materials because of their specific properties enabling their application in energy solutions, such as their pseudocapacitive behavior enabling utilization as electrode materials in supercapacitors. Activated carbon is a material well known as an electric double layer capacitor (EDLC). Bringing together the two different capacitor materials- TMOs as pseudocapacitors and carbon materials as EDL capacitors is the goal for generating future generation supercapacitors. Nickel manganite is a material of interest because of various oxidation states of manganese which provide its reactivity in oxidoreduction reactions, enhancing the pseudocapacitive behavior. Herein, we synthesized nano-sized nickel manganite by a sol-gel combustion synthesis process using glycine as fuel and subsequent calcination process. The structure and morphology of synthesized material was investigated via XRD, FESEM, and FTIR spectroscopy. Specific surface area and was dete...rmined from measured nitrogen desorption/desorption isotherms. Activated carbon was obtained by pyrolytic carbonization of alginate hydrogel in nitrogen atmosphere and activation with KOH. The material was combined with synthesized NiMn2O4 nanopowder and tested as supercapacitor electrode. The second alternative was incorporating NiMn2O4 powder into alginate hydrogel, followed by pyrolysis in nitrogen atmosphere to obtain a NiMn2O4 -activated carbon composite. The obtained materials were electrochemically characterized with cyclic voltammetry (LV) and galvanostatic chronopotentiometry to get galvanostatic charge-discharge curves. We calculated high specific capacitance values ranging to several hundred F/g, showing our hybrid material is a promising electrode in a supercapacitor system.

Keywords:
nickel / manganese / oxide / synthesis / characterization / supercapacitor / alginate / activated carbon
Source:
Abstract Book / Ceramics in Europe 2022, Krakow, 10-14 July, 2022, 2022, 404-
Publisher:
  • Krakow : Agencja Reklamowa EURO GRAPHIC
  • Krakow : Polskie Towarzystwo Ceramiczne

ISBN: 978-83-942760-9-6

[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_rimsi_1617
URI
http://rimsi.imsi.bg.ac.rs/handle/123456789/1617
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za multidisciplinarna istraživanja
TY  - CONF
AU  - Dojčinović, Milena
AU  - Vasiljević, Zorka Z
AU  - Tadic, Nenad
AU  - Krstic, Jugoslav
AU  - Nikolić, Maria Vesna
PY  - 2022
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1617
AB  - Transition metal oxides (TMOs) are promising materials because of their specific properties enabling their application in energy solutions, such as their pseudocapacitive behavior enabling utilization as electrode materials in supercapacitors. Activated carbon is a material well known as an electric double layer capacitor (EDLC). Bringing together the two different capacitor materials- TMOs as pseudocapacitors and carbon materials as EDL capacitors is the goal for generating future generation supercapacitors. Nickel manganite is a material of interest because of various oxidation states of manganese which provide its reactivity in oxidoreduction reactions, enhancing the pseudocapacitive behavior. Herein, we synthesized nano-sized nickel manganite by a sol-gel combustion synthesis process using glycine as fuel and subsequent calcination process. The structure and morphology of synthesized material was investigated via XRD, FESEM, and FTIR spectroscopy. Specific surface area and was determined from measured nitrogen 
 desorption/desorption isotherms. Activated carbon was obtained by pyrolytic carbonization of alginate hydrogel in nitrogen atmosphere and activation with KOH. The material was combined with synthesized NiMn2O4 nanopowder and tested as supercapacitor electrode. The second alternative was incorporating NiMn2O4 powder into alginate hydrogel, followed by pyrolysis in nitrogen atmosphere to obtain a NiMn2O4 -activated
carbon composite. The obtained materials were electrochemically characterized with cyclic voltammetry (LV) and galvanostatic chronopotentiometry to get galvanostatic charge-discharge curves. We calculated high specific capacitance values ranging to several hundred F/g, showing our hybrid material is a promising electrode in a supercapacitor system.
PB  - Krakow : Agencja Reklamowa EURO GRAPHIC
PB  - Krakow : Polskie Towarzystwo Ceramiczne
C3  - Abstract Book / Ceramics in Europe 2022, Krakow, 10-14 July, 2022
T1  - Alginate-derived activated carbon hybridized with NiMn2O4 for use in supercapacitors
SP  - 404
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_1617
ER  - 
@conference{
author = "Dojčinović, Milena and Vasiljević, Zorka Z and Tadic, Nenad and Krstic, Jugoslav and Nikolić, Maria Vesna",
year = "2022",
abstract = "Transition metal oxides (TMOs) are promising materials because of their specific properties enabling their application in energy solutions, such as their pseudocapacitive behavior enabling utilization as electrode materials in supercapacitors. Activated carbon is a material well known as an electric double layer capacitor (EDLC). Bringing together the two different capacitor materials- TMOs as pseudocapacitors and carbon materials as EDL capacitors is the goal for generating future generation supercapacitors. Nickel manganite is a material of interest because of various oxidation states of manganese which provide its reactivity in oxidoreduction reactions, enhancing the pseudocapacitive behavior. Herein, we synthesized nano-sized nickel manganite by a sol-gel combustion synthesis process using glycine as fuel and subsequent calcination process. The structure and morphology of synthesized material was investigated via XRD, FESEM, and FTIR spectroscopy. Specific surface area and was determined from measured nitrogen 
 desorption/desorption isotherms. Activated carbon was obtained by pyrolytic carbonization of alginate hydrogel in nitrogen atmosphere and activation with KOH. The material was combined with synthesized NiMn2O4 nanopowder and tested as supercapacitor electrode. The second alternative was incorporating NiMn2O4 powder into alginate hydrogel, followed by pyrolysis in nitrogen atmosphere to obtain a NiMn2O4 -activated
carbon composite. The obtained materials were electrochemically characterized with cyclic voltammetry (LV) and galvanostatic chronopotentiometry to get galvanostatic charge-discharge curves. We calculated high specific capacitance values ranging to several hundred F/g, showing our hybrid material is a promising electrode in a supercapacitor system.",
publisher = "Krakow : Agencja Reklamowa EURO GRAPHIC, Krakow : Polskie Towarzystwo Ceramiczne",
journal = "Abstract Book / Ceramics in Europe 2022, Krakow, 10-14 July, 2022",
title = "Alginate-derived activated carbon hybridized with NiMn2O4 for use in supercapacitors",
pages = "404",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_1617"
}
Dojčinović, M., Vasiljević, Z. Z., Tadic, N., Krstic, J.,& Nikolić, M. V.. (2022). Alginate-derived activated carbon hybridized with NiMn2O4 for use in supercapacitors. in Abstract Book / Ceramics in Europe 2022, Krakow, 10-14 July, 2022
Krakow : Agencja Reklamowa EURO GRAPHIC., 404.
https://hdl.handle.net/21.15107/rcub_rimsi_1617
Dojčinović M, Vasiljević ZZ, Tadic N, Krstic J, Nikolić MV. Alginate-derived activated carbon hybridized with NiMn2O4 for use in supercapacitors. in Abstract Book / Ceramics in Europe 2022, Krakow, 10-14 July, 2022. 2022;:404.
https://hdl.handle.net/21.15107/rcub_rimsi_1617 .
Dojčinović, Milena, Vasiljević, Zorka Z, Tadic, Nenad, Krstic, Jugoslav, Nikolić, Maria Vesna, "Alginate-derived activated carbon hybridized with NiMn2O4 for use in supercapacitors" in Abstract Book / Ceramics in Europe 2022, Krakow, 10-14 July, 2022 (2022):404,
https://hdl.handle.net/21.15107/rcub_rimsi_1617 .

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB