RIMSI - Repository of Institute for Multidisciplinary Research
University of Belgrade - Institute for Multidisciplinary Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Antioxidant and cell-friendly Fe2TiO5 nanoparticles for food packaging application

Authorized Users Only
2022
Authors
Rizzoto, Francesco
Vasiljević, Zorka Z
Stanojevic, Gordana
Dojčinović, Milena
Jankovic-Castvan, Ivona
Vujancevic, Jelena
Tadic, Nenad
Branković, Goran
MAGNIEZ, Aurélie
Vidic, Jasmina
Nikolić, Maria Vesna
Article (Accepted Version)
,
Elsevier
Metadata
Show full item record
Abstract
An emerging technology of active packaging enables prolongation of food shelf life by limiting the oxygen transfer and the reactivity of free radicals, which both destruct food freshness. In this work, Fe2TiO5 nanoparticles were synthesized using a modified sol–gel method and evaluated as an enforcement of alginate food packaging film. Pure phase Fe2TiO5 nanoparticles had an average particle size of 44 nm and rhombohedral morphology. Fe2TiO5 nanoparticles induce no cell damage of human Caco-2 epithelial cells and show no inhibitory effect towards growth of a panel of bacterial strains, suggesting good biocompatibility. Films obtained by incorporation of Fe2TiO5 nanoparticles into alginate using the solvent casting method show no migration of iron or titanium ions from films to food simulants again suggesting their safety as a packaging material. Fe2TiO5 nanoparticles also showed strong antioxidant efficiency as determined using the DPPḢ assay, and confirmed further in a preservation te...st on fresh fruit.

Keywords:
Fe2TiO5 nanoparticles, Alginate film, Composite film, Antioxidant active, Biocompatibility
Source:
Food Chemistry, 01-10-2022, 390
Publisher:
  • Elsevier
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200053 (University of Belgrade, Institute for Multidisciplinary Research) (RS-200053)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200175 (Institute of Technical Sciences of SASA, Belgrade) (RS-200175)
  • Integration of PAper-based Nucleic acid testing mEthods into Microfluidic devices for improved biosensing Applications (EU-872662)

DOI: 10.1016/j.foodchem.2022.133198

ISSN: 0308-8146

[ Google Scholar ]
URI
http://rimsi.imsi.bg.ac.rs/handle/123456789/1584
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za multidisciplinarna istraživanja
TY  - JOUR
AU  - Rizzoto, Francesco
AU  - Vasiljević, Zorka Z
AU  - Stanojevic, Gordana
AU  - Dojčinović, Milena
AU  - Jankovic-Castvan, Ivona
AU  - Vujancevic, Jelena
AU  - Tadic, Nenad
AU  - Branković, Goran
AU  - MAGNIEZ, Aurélie
AU  - Vidic, Jasmina
AU  - Nikolić, Maria Vesna
PY  - 2022-10-01
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1584
AB  - An emerging technology of active packaging enables prolongation of food shelf life by limiting the oxygen transfer and the reactivity of free radicals, which both destruct food freshness. In this work, Fe2TiO5 nanoparticles were synthesized using a modified sol–gel method and evaluated as an enforcement of alginate food packaging film. Pure phase Fe2TiO5 nanoparticles had an average particle size of 44 nm and rhombohedral morphology. Fe2TiO5 nanoparticles induce no cell damage of human Caco-2 epithelial cells and show no inhibitory effect towards growth of a panel of bacterial strains, suggesting good biocompatibility. Films obtained by incorporation of Fe2TiO5 nanoparticles into alginate using the solvent casting method show no migration of iron or titanium ions from films to food simulants again suggesting their safety as a packaging material. Fe2TiO5 nanoparticles also showed strong antioxidant efficiency as determined using the DPPḢ assay, and confirmed further in a preservation test on fresh fruit.
PB  - Elsevier
T2  - Food Chemistry
T1  - Antioxidant and cell-friendly Fe2TiO5 nanoparticles for food packaging application
VL  - 390
DO  - 10.1016/j.foodchem.2022.133198
ER  - 
@article{
author = "Rizzoto, Francesco and Vasiljević, Zorka Z and Stanojevic, Gordana and Dojčinović, Milena and Jankovic-Castvan, Ivona and Vujancevic, Jelena and Tadic, Nenad and Branković, Goran and MAGNIEZ, Aurélie and Vidic, Jasmina and Nikolić, Maria Vesna",
year = "2022-10-01",
abstract = "An emerging technology of active packaging enables prolongation of food shelf life by limiting the oxygen transfer and the reactivity of free radicals, which both destruct food freshness. In this work, Fe2TiO5 nanoparticles were synthesized using a modified sol–gel method and evaluated as an enforcement of alginate food packaging film. Pure phase Fe2TiO5 nanoparticles had an average particle size of 44 nm and rhombohedral morphology. Fe2TiO5 nanoparticles induce no cell damage of human Caco-2 epithelial cells and show no inhibitory effect towards growth of a panel of bacterial strains, suggesting good biocompatibility. Films obtained by incorporation of Fe2TiO5 nanoparticles into alginate using the solvent casting method show no migration of iron or titanium ions from films to food simulants again suggesting their safety as a packaging material. Fe2TiO5 nanoparticles also showed strong antioxidant efficiency as determined using the DPPḢ assay, and confirmed further in a preservation test on fresh fruit.",
publisher = "Elsevier",
journal = "Food Chemistry",
title = "Antioxidant and cell-friendly Fe2TiO5 nanoparticles for food packaging application",
volume = "390",
doi = "10.1016/j.foodchem.2022.133198"
}
Rizzoto, F., Vasiljević, Z. Z., Stanojevic, G., Dojčinović, M., Jankovic-Castvan, I., Vujancevic, J., Tadic, N., Branković, G., MAGNIEZ, A., Vidic, J.,& Nikolić, M. V.. (2022-10-01). Antioxidant and cell-friendly Fe2TiO5 nanoparticles for food packaging application. in Food Chemistry
Elsevier., 390.
https://doi.org/10.1016/j.foodchem.2022.133198
Rizzoto F, Vasiljević ZZ, Stanojevic G, Dojčinović M, Jankovic-Castvan I, Vujancevic J, Tadic N, Branković G, MAGNIEZ A, Vidic J, Nikolić MV. Antioxidant and cell-friendly Fe2TiO5 nanoparticles for food packaging application. in Food Chemistry. 2022;390.
doi:10.1016/j.foodchem.2022.133198 .
Rizzoto, Francesco, Vasiljević, Zorka Z, Stanojevic, Gordana, Dojčinović, Milena, Jankovic-Castvan, Ivona, Vujancevic, Jelena, Tadic, Nenad, Branković, Goran, MAGNIEZ, Aurélie, Vidic, Jasmina, Nikolić, Maria Vesna, "Antioxidant and cell-friendly Fe2TiO5 nanoparticles for food packaging application" in Food Chemistry, 390 (2022-10-01),
https://doi.org/10.1016/j.foodchem.2022.133198 . .

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB