RIMSI - Repository of Institute for Multidisciplinary Research
University of Belgrade - Institute for Multidisciplinary Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Desiccation Tolerance in Ramonda serbica Panc.: An Integrative Transcriptomic, Proteomic, Metabolite and Photosynthetic Study

Thumbnail
2022
Desiccation-Tolerance-in-Ramonda-serbica-Panc-An-Integrative-Transcriptomic-Proteomic-Metabolite-and-Photosynthetic-StudyPlants.pdf (4.534Mb)
Authors
Vidović, Marija
Battisti, Ilaria
Pantelić, Ana
Morina, Filis
Arrigoni, Giorgio
Masi, Antonio
Veljović-Jovanović, Sonja
Article (Published version)
Metadata
Show full item record
Abstract
The resurrection plant Ramonda serbica Panc. survives long desiccation periods and fully recovers metabolic functions within one day upon watering. This study aimed to identify key candidates and pathways involved in desiccation tolerance in R. serbica. We combined differential transcriptomics and proteomics, phenolic and sugar analysis, FTIR analysis of the cell wall polymers, and detailed analysis of the photosynthetic electron transport (PET) chain. The proteomic analysis allowed the relative quantification of 1192 different protein groups, of which 408 were differentially abundant between hydrated (HL) and desiccated leaves (DL). Almost all differentially abundant proteins related to photosynthetic processes were less abundant, while chlorophyll fluorescence measurements implied shifting from linear PET to cyclic electron transport (CET). The levels of H2O2 scavenging enzymes, ascorbate-glutathione cycle components, catalases, peroxiredoxins, Fe-, and Mn superoxide dismutase (SOD) ...were reduced in DL. However, six germin-like proteins (GLPs), four Cu/ZnSOD isoforms, three polyphenol oxidases, and 22 late embryogenesis abundant proteins (LEAPs; mainly LEA4 and dehydrins), were desiccation-inducible. Desiccation provoked cell wall remodeling related to GLP-derived H2O2/HO● activity and pectin demethylesterification. This comprehensive study contributes to understanding the role and regulation of the main metabolic pathways during desiccation aiming at crop drought tolerance improvement

Keywords:
cell wall remodeling / cyclic electron transport / drought / germin-like proteins / late embryogenesis abundant proteins / OJIP / pectin / polyphenol oxidase / resurrection plant / superoxide dismutase
Source:
Plants, 2022, 11, 9, 1199-
Publisher:
  • MDPI
Funding / projects:
  • LEAPSyn-SCI - Late Embryogenesis Abundant Proteins: Structural Characterisation and Interaction With Α-Synuclein (RS-6039663)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200042 (University of Belgrade, Institute of Molecular Genetics and Genetic Engineering) (RS-200042)
  • The University of Padova (grant number BIRD189887/18 to G.A.)
  • COST Action BM1405 (STSM-BM1405-190218-092344 and STSM-BM1405-190317-080965)
  • The Ministry of Education, Youth and Sports of the Czech Republic with co-financing from the European Union (grant “KOROLID”, CZ.02.1.01/0.0/0.0/15_003/0000336)
  • LEAPSyn-SCI - Late Embryogenesis Abundant Proteins: Structural Characterisation and Interaction With Α-Synuclein (RS-6039663)
  • The Italian Ministry for Education, University and Research (project number PRIN 2020HB9PR9_005)

DOI: 10.3390/plants11091199

ISSN: 2223-7747

[ Google Scholar ]
URI
http://rimsi.imsi.bg.ac.rs/handle/123456789/1574
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za multidisciplinarna istraživanja
TY  - JOUR
AU  - Vidović, Marija
AU  - Battisti, Ilaria
AU  - Pantelić, Ana
AU  - Morina, Filis
AU  - Arrigoni, Giorgio
AU  - Masi, Antonio
AU  - Veljović-Jovanović, Sonja
PY  - 2022
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1574
AB  - The resurrection plant Ramonda serbica Panc. survives long desiccation periods and fully recovers metabolic functions within one day upon watering. This study aimed to identify key candidates and pathways involved in desiccation tolerance in R. serbica. We combined differential transcriptomics and proteomics, phenolic and sugar analysis, FTIR analysis of the cell wall polymers, and detailed analysis of the photosynthetic electron transport (PET) chain. The proteomic analysis allowed the relative quantification of 1192 different protein groups, of which 408 were differentially abundant between hydrated (HL) and desiccated leaves (DL). Almost all differentially abundant proteins related to photosynthetic processes were less abundant, while chlorophyll fluorescence measurements implied shifting from linear PET to cyclic electron transport (CET). The levels of H2O2 scavenging enzymes, ascorbate-glutathione cycle components, catalases, peroxiredoxins, Fe-, and Mn superoxide dismutase (SOD) were reduced in DL. However, six germin-like proteins (GLPs), four Cu/ZnSOD isoforms, three polyphenol oxidases, and 22 late embryogenesis abundant proteins (LEAPs; mainly LEA4 and dehydrins), were desiccation-inducible. Desiccation provoked cell wall remodeling related to GLP-derived H2O2/HO● activity and pectin demethylesterification. This comprehensive study contributes to understanding the role and regulation of the main metabolic pathways during desiccation aiming at crop drought tolerance improvement
PB  - MDPI
T2  - Plants
T1  - Desiccation Tolerance in Ramonda serbica Panc.: An Integrative Transcriptomic, Proteomic, Metabolite and Photosynthetic Study
IS  - 9
SP  - 1199
VL  - 11
DO  - 10.3390/plants11091199
ER  - 
@article{
author = "Vidović, Marija and Battisti, Ilaria and Pantelić, Ana and Morina, Filis and Arrigoni, Giorgio and Masi, Antonio and Veljović-Jovanović, Sonja",
year = "2022",
abstract = "The resurrection plant Ramonda serbica Panc. survives long desiccation periods and fully recovers metabolic functions within one day upon watering. This study aimed to identify key candidates and pathways involved in desiccation tolerance in R. serbica. We combined differential transcriptomics and proteomics, phenolic and sugar analysis, FTIR analysis of the cell wall polymers, and detailed analysis of the photosynthetic electron transport (PET) chain. The proteomic analysis allowed the relative quantification of 1192 different protein groups, of which 408 were differentially abundant between hydrated (HL) and desiccated leaves (DL). Almost all differentially abundant proteins related to photosynthetic processes were less abundant, while chlorophyll fluorescence measurements implied shifting from linear PET to cyclic electron transport (CET). The levels of H2O2 scavenging enzymes, ascorbate-glutathione cycle components, catalases, peroxiredoxins, Fe-, and Mn superoxide dismutase (SOD) were reduced in DL. However, six germin-like proteins (GLPs), four Cu/ZnSOD isoforms, three polyphenol oxidases, and 22 late embryogenesis abundant proteins (LEAPs; mainly LEA4 and dehydrins), were desiccation-inducible. Desiccation provoked cell wall remodeling related to GLP-derived H2O2/HO● activity and pectin demethylesterification. This comprehensive study contributes to understanding the role and regulation of the main metabolic pathways during desiccation aiming at crop drought tolerance improvement",
publisher = "MDPI",
journal = "Plants",
title = "Desiccation Tolerance in Ramonda serbica Panc.: An Integrative Transcriptomic, Proteomic, Metabolite and Photosynthetic Study",
number = "9",
pages = "1199",
volume = "11",
doi = "10.3390/plants11091199"
}
Vidović, M., Battisti, I., Pantelić, A., Morina, F., Arrigoni, G., Masi, A.,& Veljović-Jovanović, S.. (2022). Desiccation Tolerance in Ramonda serbica Panc.: An Integrative Transcriptomic, Proteomic, Metabolite and Photosynthetic Study. in Plants
MDPI., 11(9), 1199.
https://doi.org/10.3390/plants11091199
Vidović M, Battisti I, Pantelić A, Morina F, Arrigoni G, Masi A, Veljović-Jovanović S. Desiccation Tolerance in Ramonda serbica Panc.: An Integrative Transcriptomic, Proteomic, Metabolite and Photosynthetic Study. in Plants. 2022;11(9):1199.
doi:10.3390/plants11091199 .
Vidović, Marija, Battisti, Ilaria, Pantelić, Ana, Morina, Filis, Arrigoni, Giorgio, Masi, Antonio, Veljović-Jovanović, Sonja, "Desiccation Tolerance in Ramonda serbica Panc.: An Integrative Transcriptomic, Proteomic, Metabolite and Photosynthetic Study" in Plants, 11, no. 9 (2022):1199,
https://doi.org/10.3390/plants11091199 . .

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB