RIMSI - Repository of Institute for Multidisciplinary Research
University of Belgrade - Institute for Multidisciplinary Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Microstructural, Thermoelectric and Mechanical Properties of Cu Substituted NaCo2O4

Thumbnail
2022
materials-15-04470-v2.pdf (6.641Mb)
Authors
Perać, Sanja
M.Savić, Slavica
Branković, Zorica
Bernik, Slavko
Radojković, Aleksandar
Kojić, Sanja
Vasiljević, Dragana
Branković, Goran
Article (Published version)
Metadata
Show full item record
Abstract
Polycrystalline samples of NaCo2−xCuxO4 (x = 0, 0.01, 0.03, 0.05) were obtained from powder precursors synthesized by a mechanochemically assisted solid-state reaction method (MASSR) and a citric acid complex method (CAC). Ceramic samples were prepared by pressing into disc-shaped pellets and subsequently sintering at 880 °C in an argon atmosphere. Effects of low concentrations of Cu doping and the above-mentioned synthesis procedures on the thermoelectric and mechanical properties were observed. The electrical resistivity (ρ), the thermal conductivity (κ) and the Seebeck coefficient (S) were measured simultaneously in the temperature gradient (ΔT) between the hot and cold side of the sample, and the figure of merit (ZT) was subsequently calculated. The ZT of the CAC samples was higher compared with the MASSR samples. The highest ZT value of 0.061 at ΔT = 473 K was obtained for the sample with 5 mol% of Cu prepared by the CAC method. The CAC samples showed better mechanical properties ...compared to the MASSR samples due to the higher hardness of the CAC samples which is a consequence of homogeneous microstructure and higher density obtained during sintering of these samples. The results confirmed that, besides the concentration of Cu, the synthesis procedure considerably affected the thermoelectric and mechanical properties of NaCo2O4 (NCO) ceramics.

Keywords:
microstructure / electrical resistivity / thermal conductivity / mechanical properties
Source:
Materials, 2022, 15, 4470-
Publisher:
  • MDPI
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200053 (University of Belgrade, Institute for Multidisciplinary Research) (RS-200053)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200358 (BioSense Institute) (RS-200358)

DOI: 10.3390/ma15134470

ISSN: 1996-1944

[ Google Scholar ]
URI
http://rimsi.imsi.bg.ac.rs/handle/123456789/1561
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za multidisciplinarna istraživanja
TY  - JOUR
AU  - Perać, Sanja
AU  - M.Savić, Slavica
AU  - Branković, Zorica
AU  - Bernik, Slavko
AU  - Radojković, Aleksandar
AU  - Kojić, Sanja
AU  - Vasiljević, Dragana
AU  - Branković, Goran
PY  - 2022
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1561
AB  - Polycrystalline samples of NaCo2−xCuxO4 (x = 0, 0.01, 0.03, 0.05) were obtained from powder precursors synthesized by a mechanochemically assisted solid-state reaction method (MASSR) and a citric acid complex method (CAC). Ceramic samples were prepared by pressing into disc-shaped pellets and subsequently sintering at 880 °C in an argon atmosphere. Effects of low concentrations of Cu doping and the above-mentioned synthesis procedures on the thermoelectric and mechanical properties were observed. The electrical resistivity (ρ), the thermal conductivity (κ) and the Seebeck coefficient (S) were measured simultaneously in the temperature gradient (ΔT) between the hot and cold side of the sample, and the figure of merit (ZT) was subsequently calculated. The ZT of the CAC samples was higher compared with the MASSR samples. The highest ZT value of 0.061 at ΔT = 473 K was obtained for the sample with 5 mol% of Cu prepared by the CAC method. The CAC samples showed better mechanical properties compared to the MASSR samples due to the higher hardness of the CAC samples which is a consequence of homogeneous microstructure and higher density obtained during sintering of these samples. The results confirmed that, besides the concentration of Cu, the synthesis procedure considerably affected the thermoelectric and mechanical properties of NaCo2O4 (NCO) ceramics.
PB  - MDPI
T2  - Materials
T1  - Microstructural, Thermoelectric and Mechanical Properties of Cu Substituted NaCo2O4
SP  - 4470
VL  - 15
DO  - 10.3390/ma15134470
ER  - 
@article{
author = "Perać, Sanja and M.Savić, Slavica and Branković, Zorica and Bernik, Slavko and Radojković, Aleksandar and Kojić, Sanja and Vasiljević, Dragana and Branković, Goran",
year = "2022",
abstract = "Polycrystalline samples of NaCo2−xCuxO4 (x = 0, 0.01, 0.03, 0.05) were obtained from powder precursors synthesized by a mechanochemically assisted solid-state reaction method (MASSR) and a citric acid complex method (CAC). Ceramic samples were prepared by pressing into disc-shaped pellets and subsequently sintering at 880 °C in an argon atmosphere. Effects of low concentrations of Cu doping and the above-mentioned synthesis procedures on the thermoelectric and mechanical properties were observed. The electrical resistivity (ρ), the thermal conductivity (κ) and the Seebeck coefficient (S) were measured simultaneously in the temperature gradient (ΔT) between the hot and cold side of the sample, and the figure of merit (ZT) was subsequently calculated. The ZT of the CAC samples was higher compared with the MASSR samples. The highest ZT value of 0.061 at ΔT = 473 K was obtained for the sample with 5 mol% of Cu prepared by the CAC method. The CAC samples showed better mechanical properties compared to the MASSR samples due to the higher hardness of the CAC samples which is a consequence of homogeneous microstructure and higher density obtained during sintering of these samples. The results confirmed that, besides the concentration of Cu, the synthesis procedure considerably affected the thermoelectric and mechanical properties of NaCo2O4 (NCO) ceramics.",
publisher = "MDPI",
journal = "Materials",
title = "Microstructural, Thermoelectric and Mechanical Properties of Cu Substituted NaCo2O4",
pages = "4470",
volume = "15",
doi = "10.3390/ma15134470"
}
Perać, S., M.Savić, S., Branković, Z., Bernik, S., Radojković, A., Kojić, S., Vasiljević, D.,& Branković, G.. (2022). Microstructural, Thermoelectric and Mechanical Properties of Cu Substituted NaCo2O4. in Materials
MDPI., 15, 4470.
https://doi.org/10.3390/ma15134470
Perać S, M.Savić S, Branković Z, Bernik S, Radojković A, Kojić S, Vasiljević D, Branković G. Microstructural, Thermoelectric and Mechanical Properties of Cu Substituted NaCo2O4. in Materials. 2022;15:4470.
doi:10.3390/ma15134470 .
Perać, Sanja, M.Savić, Slavica, Branković, Zorica, Bernik, Slavko, Radojković, Aleksandar, Kojić, Sanja, Vasiljević, Dragana, Branković, Goran, "Microstructural, Thermoelectric and Mechanical Properties of Cu Substituted NaCo2O4" in Materials, 15 (2022):4470,
https://doi.org/10.3390/ma15134470 . .

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB