RIMSI - Repository of Institute for Multidisciplinary Research
University of Belgrade - Institute for Multidisciplinary Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tetragonal CoMn2O4 nanocrystals on electrospun carbon fibers as high-performance battery-type supercapacitor electrode materials

Authorized Users Only
2021
Authors
Mijailović, Daniel M.
Radmilović, Vuk V.
Lačnjevac, Uroš
Stojanović, Dusica B.
Bustillo, Karen C.
Jović, Vladimir D
Radmilović, Velimir R
Uskoković, Petar S.
Article (Published version)
Metadata
Show full item record
Abstract
We herein report a simple two-step procedure for fabricating tetragonal CoMn2O4 spinel nanocrystals on carbon fibers. The battery-type behavior of these composite fibers arises from the redox activity of CoMn2O4 in an alkaline aqueous solution, which, in combination with the carbon fibers, endows good electrochemical performance and long-term stability. The C"CoMn2O4 electrode exhibited high specific capacity, up to 62 mA h g(-1) at 1 A g(-1) with a capacity retention of around 90% after 4000 cycles. A symmetrical coin-cell device assembled with the composite electrodes delivered a high energy density of 7.3 W h kg(-1) at a power density of 0.1 kW kg(-1), which is around 13 times higher than that of bare carbon electrodes. The coin cell was cycled for 5000 cycles with 96.3% capacitance retention, at a voltage of up to 0.8 V, demonstrating excellent cycling stability.
Keywords:
spinel / electrospinning / composite fiber / symmetrical coin-cell / galvanostatic charge / galvanostatic discharge
Source:
Dalton Transactions, 2021, 50, 43, 15669-15678
Publisher:
  • Royal Soc Chemistry, Cambridge
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200135 (University of Belgrade, Faculty of Technology and Metallurgy) (RS-200135)
  • Serbian Academy of Sciences and Arts [F-141]
  • Office of Science, Office of Basic Energy Sciences, of the U.S. Department of EnergyUnited States Department of Energy (DOE) [DE-AC02-05CH11231]

DOI: 10.1039/d1dt02829d

ISSN: 1477-9226

PubMed: 34676859

WoS: 000709889600001

Scopus: 2-s2.0-85120031582
[ Google Scholar ]
3
1
URI
http://rimsi.imsi.bg.ac.rs/handle/123456789/1496
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za multidisciplinarna istraživanja
TY  - JOUR
AU  - Mijailović, Daniel M.
AU  - Radmilović, Vuk V.
AU  - Lačnjevac, Uroš
AU  - Stojanović, Dusica B.
AU  - Bustillo, Karen C.
AU  - Jović, Vladimir D
AU  - Radmilović, Velimir R
AU  - Uskoković, Petar S.
PY  - 2021
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1496
AB  - We herein report a simple two-step procedure for fabricating tetragonal CoMn2O4 spinel nanocrystals on carbon fibers. The battery-type behavior of these composite fibers arises from the redox activity of CoMn2O4 in an alkaline aqueous solution, which, in combination with the carbon fibers, endows good electrochemical performance and long-term stability. The C"CoMn2O4 electrode exhibited high specific capacity, up to 62 mA h g(-1) at 1 A g(-1) with a capacity retention of around 90% after 4000 cycles. A symmetrical coin-cell device assembled with the composite electrodes delivered a high energy density of 7.3 W h kg(-1) at a power density of 0.1 kW kg(-1), which is around 13 times higher than that of bare carbon electrodes. The coin cell was cycled for 5000 cycles with 96.3% capacitance retention, at a voltage of up to 0.8 V, demonstrating excellent cycling stability.
PB  - Royal Soc Chemistry, Cambridge
T2  - Dalton Transactions
T1  - Tetragonal CoMn2O4 nanocrystals on electrospun carbon fibers as high-performance battery-type supercapacitor electrode materials
EP  - 15678
IS  - 43
SP  - 15669
VL  - 50
DO  - 10.1039/d1dt02829d
ER  - 
@article{
author = "Mijailović, Daniel M. and Radmilović, Vuk V. and Lačnjevac, Uroš and Stojanović, Dusica B. and Bustillo, Karen C. and Jović, Vladimir D and Radmilović, Velimir R and Uskoković, Petar S.",
year = "2021",
abstract = "We herein report a simple two-step procedure for fabricating tetragonal CoMn2O4 spinel nanocrystals on carbon fibers. The battery-type behavior of these composite fibers arises from the redox activity of CoMn2O4 in an alkaline aqueous solution, which, in combination with the carbon fibers, endows good electrochemical performance and long-term stability. The C"CoMn2O4 electrode exhibited high specific capacity, up to 62 mA h g(-1) at 1 A g(-1) with a capacity retention of around 90% after 4000 cycles. A symmetrical coin-cell device assembled with the composite electrodes delivered a high energy density of 7.3 W h kg(-1) at a power density of 0.1 kW kg(-1), which is around 13 times higher than that of bare carbon electrodes. The coin cell was cycled for 5000 cycles with 96.3% capacitance retention, at a voltage of up to 0.8 V, demonstrating excellent cycling stability.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "Dalton Transactions",
title = "Tetragonal CoMn2O4 nanocrystals on electrospun carbon fibers as high-performance battery-type supercapacitor electrode materials",
pages = "15678-15669",
number = "43",
volume = "50",
doi = "10.1039/d1dt02829d"
}
Mijailović, D. M., Radmilović, V. V., Lačnjevac, U., Stojanović, D. B., Bustillo, K. C., Jović, V. D., Radmilović, V. R.,& Uskoković, P. S.. (2021). Tetragonal CoMn2O4 nanocrystals on electrospun carbon fibers as high-performance battery-type supercapacitor electrode materials. in Dalton Transactions
Royal Soc Chemistry, Cambridge., 50(43), 15669-15678.
https://doi.org/10.1039/d1dt02829d
Mijailović DM, Radmilović VV, Lačnjevac U, Stojanović DB, Bustillo KC, Jović VD, Radmilović VR, Uskoković PS. Tetragonal CoMn2O4 nanocrystals on electrospun carbon fibers as high-performance battery-type supercapacitor electrode materials. in Dalton Transactions. 2021;50(43):15669-15678.
doi:10.1039/d1dt02829d .
Mijailović, Daniel M., Radmilović, Vuk V., Lačnjevac, Uroš, Stojanović, Dusica B., Bustillo, Karen C., Jović, Vladimir D, Radmilović, Velimir R, Uskoković, Petar S., "Tetragonal CoMn2O4 nanocrystals on electrospun carbon fibers as high-performance battery-type supercapacitor electrode materials" in Dalton Transactions, 50, no. 43 (2021):15669-15678,
https://doi.org/10.1039/d1dt02829d . .

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB