Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization
Authorized Users Only
2021
Authors
Popović, Nikolina
Przulj, Dunja
Mladenović, Maja
Prodanović, Olivera

Ece, Selin
Ilic-Durdic, Karla
Ostafe, Raluca
Fischer, Rainer
Prodanović, Radivoje

Article (Published version)

Metadata
Show full item recordAbstract
High amounts of toxic textile dyes are released into the environment due to coloring and wastewaters treatment processes' inefficiency. To remove dyes from the environment and wastewaters, researchers focused on applying immobilized enzymes due to mild reaction conditions and enzyme nontoxicity. Laccases are oxidases with wide substrate specificity, capable of degradation of many different dye types. Laccase from Streptomyces cyaneus was expressed on the surface of Saccharomyces cerevisiae EBY100 cells. The specific activity of surface-displayed laccase was increased by toluene-induced lysis to 3.1 U/g of cell walls. For cell wall laccase immobilization within hydrogel beads, alginate was modified by dopamine using periodate oxidation and reductive amination and characterized by UV-Vis, FTIR, and NMR spectroscopy. Cell wall laccase was immobilized within alginate and dopamine-alginate beads additionally cross-linked by oxygen and laccase. The immobilized enzyme's specific activity was ...two times higher using dopamine-alginate compared to native alginate beads, and immobilization yield increased 16 times. Cell wall laccase immobilized within dopamine-alginate beads decolorized Amido Black 10B, Reactive Black 5, Evans Blue, and Remazol Brilliant Blue with 100% efficiency and after ten rounds of multiple-use retained decolorization efficiency of 90% with Evans Blue and 61% with Amido Black.
Keywords:
Yeast surface display / Laccase / DopamineSource:
International Journal of Biological Macromolecules, 2021, 181, 1072-1080Publisher:
- Elsevier, Amsterdam
Funding / projects:
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200168 (University of Belgrade, Faculty of Chemistry) (RS-200168)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200053 (University of Belgrade, Institute for Multidisciplinary Research) (RS-200053)
DOI: 10.1016/j.ijbiomac.2021.04.115
ISSN: 0141-8130
PubMed: 33892032
WoS: 000656916800003
Scopus: 2-s2.0-85104701498
Collections
Institution/Community
Institut za multidisciplinarna istraživanjaTY - JOUR AU - Popović, Nikolina AU - Przulj, Dunja AU - Mladenović, Maja AU - Prodanović, Olivera AU - Ece, Selin AU - Ilic-Durdic, Karla AU - Ostafe, Raluca AU - Fischer, Rainer AU - Prodanović, Radivoje PY - 2021 UR - http://rimsi.imsi.bg.ac.rs/handle/123456789/1490 AB - High amounts of toxic textile dyes are released into the environment due to coloring and wastewaters treatment processes' inefficiency. To remove dyes from the environment and wastewaters, researchers focused on applying immobilized enzymes due to mild reaction conditions and enzyme nontoxicity. Laccases are oxidases with wide substrate specificity, capable of degradation of many different dye types. Laccase from Streptomyces cyaneus was expressed on the surface of Saccharomyces cerevisiae EBY100 cells. The specific activity of surface-displayed laccase was increased by toluene-induced lysis to 3.1 U/g of cell walls. For cell wall laccase immobilization within hydrogel beads, alginate was modified by dopamine using periodate oxidation and reductive amination and characterized by UV-Vis, FTIR, and NMR spectroscopy. Cell wall laccase was immobilized within alginate and dopamine-alginate beads additionally cross-linked by oxygen and laccase. The immobilized enzyme's specific activity was two times higher using dopamine-alginate compared to native alginate beads, and immobilization yield increased 16 times. Cell wall laccase immobilized within dopamine-alginate beads decolorized Amido Black 10B, Reactive Black 5, Evans Blue, and Remazol Brilliant Blue with 100% efficiency and after ten rounds of multiple-use retained decolorization efficiency of 90% with Evans Blue and 61% with Amido Black. PB - Elsevier, Amsterdam T2 - International Journal of Biological Macromolecules T1 - Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization EP - 1080 SP - 1072 VL - 181 DO - 10.1016/j.ijbiomac.2021.04.115 ER -
@article{ author = "Popović, Nikolina and Przulj, Dunja and Mladenović, Maja and Prodanović, Olivera and Ece, Selin and Ilic-Durdic, Karla and Ostafe, Raluca and Fischer, Rainer and Prodanović, Radivoje", year = "2021", abstract = "High amounts of toxic textile dyes are released into the environment due to coloring and wastewaters treatment processes' inefficiency. To remove dyes from the environment and wastewaters, researchers focused on applying immobilized enzymes due to mild reaction conditions and enzyme nontoxicity. Laccases are oxidases with wide substrate specificity, capable of degradation of many different dye types. Laccase from Streptomyces cyaneus was expressed on the surface of Saccharomyces cerevisiae EBY100 cells. The specific activity of surface-displayed laccase was increased by toluene-induced lysis to 3.1 U/g of cell walls. For cell wall laccase immobilization within hydrogel beads, alginate was modified by dopamine using periodate oxidation and reductive amination and characterized by UV-Vis, FTIR, and NMR spectroscopy. Cell wall laccase was immobilized within alginate and dopamine-alginate beads additionally cross-linked by oxygen and laccase. The immobilized enzyme's specific activity was two times higher using dopamine-alginate compared to native alginate beads, and immobilization yield increased 16 times. Cell wall laccase immobilized within dopamine-alginate beads decolorized Amido Black 10B, Reactive Black 5, Evans Blue, and Remazol Brilliant Blue with 100% efficiency and after ten rounds of multiple-use retained decolorization efficiency of 90% with Evans Blue and 61% with Amido Black.", publisher = "Elsevier, Amsterdam", journal = "International Journal of Biological Macromolecules", title = "Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization", pages = "1080-1072", volume = "181", doi = "10.1016/j.ijbiomac.2021.04.115" }
Popović, N., Przulj, D., Mladenović, M., Prodanović, O., Ece, S., Ilic-Durdic, K., Ostafe, R., Fischer, R.,& Prodanović, R.. (2021). Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization. in International Journal of Biological Macromolecules Elsevier, Amsterdam., 181, 1072-1080. https://doi.org/10.1016/j.ijbiomac.2021.04.115
Popović N, Przulj D, Mladenović M, Prodanović O, Ece S, Ilic-Durdic K, Ostafe R, Fischer R, Prodanović R. Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization. in International Journal of Biological Macromolecules. 2021;181:1072-1080. doi:10.1016/j.ijbiomac.2021.04.115 .
Popović, Nikolina, Przulj, Dunja, Mladenović, Maja, Prodanović, Olivera, Ece, Selin, Ilic-Durdic, Karla, Ostafe, Raluca, Fischer, Rainer, Prodanović, Radivoje, "Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization" in International Journal of Biological Macromolecules, 181 (2021):1072-1080, https://doi.org/10.1016/j.ijbiomac.2021.04.115 . .