RIMSI - Repository of Institute for Multidisciplinary Research
University of Belgrade - Institute for Multidisciplinary Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sequestration potential of phytolith occluded carbon in China's paddy rice (Oryza sativa L.) systems

Authorized Users Only
2021
Authors
Tan, Li
Fan, Xiaoping
Yan, Guochao
Peng, Miao
Zhang, Nan
Ye, Mujun
Gao, Zixiang
Song, Alin
Nikolic, Miroslav
Liang, Yongchao
Article (Published version)
Metadata
Show full item record
Abstract
Phytolith-occluded carbon (PhytOC) is resistant to decomposition and, if crop residue biomass is incorporated into soil, has a significant potential for long-term soil carbon sequestration. However, the magnitude and spatial distribution of rice straw PhytOC sequestration remain unclear. Here, we used 279 samplings from nine provinces across China to establish the relationship between soil nutrients availability and rice straw phytoliths concentra-tion, thereby predicting annual PhytOC sequestration of Chinese rice systems. The results suggest that rice straw phytoliths sequester about 0.26 Tg CO2 per yr (8.7 kg CO2 ha(-1) yr(-1)) in China. Great variability of PhytOC exists across the region depending on rice variety. If rice varieties that occluded little PhytOC were replaced by ones with the highest PhytOC concentration, the sequestration rate might be increased to 0.83 Tg CO2 yr(-1) (27.7 kg CO2 ha(-1) yr(-1)). The distribution pattern shows that 51% of rice straw PhytOC sequestrat...ion can be attributed to the Middle-Lower Yangtze Plain due to its vast rice production. PhytOC sequestration is a crucial mechanism of global biogeochemical carbon sink, and practices such as appropriate fertilization application and selection of rice varieties with higher PhytOC concentration may alleviate climate warming.

Keywords:
Spatial distribution / Rice straw / Phytolith-occluded carbon / Neural network / China / Carbon sequestration
Source:
Science of the Total Environment, 2021, 774
Publisher:
  • Elsevier, Amsterdam
Funding / projects:
  • Zhejiang Provincial Science and Technology Programs [2018C02036]

DOI: 10.1016/j.scitotenv.2021.145696

ISSN: 0048-9697

WoS: 000641369700022

Scopus: 2-s2.0-85101137000
[ Google Scholar ]
10
URI
http://rimsi.imsi.bg.ac.rs/handle/123456789/1440
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za multidisciplinarna istraživanja
TY  - JOUR
AU  - Tan, Li
AU  - Fan, Xiaoping
AU  - Yan, Guochao
AU  - Peng, Miao
AU  - Zhang, Nan
AU  - Ye, Mujun
AU  - Gao, Zixiang
AU  - Song, Alin
AU  - Nikolic, Miroslav
AU  - Liang, Yongchao
PY  - 2021
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1440
AB  - Phytolith-occluded carbon (PhytOC) is resistant to decomposition and, if crop residue biomass is incorporated into soil, has a significant potential for long-term soil carbon sequestration. However, the magnitude and spatial distribution of rice straw PhytOC sequestration remain unclear. Here, we used 279 samplings from nine provinces across China to establish the relationship between soil nutrients availability and rice straw phytoliths concentra-tion, thereby predicting annual PhytOC sequestration of Chinese rice systems. The results suggest that rice straw phytoliths sequester about 0.26 Tg CO2 per yr (8.7 kg CO2 ha(-1) yr(-1)) in China. Great variability of PhytOC exists across the region depending on rice variety. If rice varieties that occluded little PhytOC were replaced by ones with the highest PhytOC concentration, the sequestration rate might be increased to 0.83 Tg CO2 yr(-1) (27.7 kg CO2 ha(-1) yr(-1)). The distribution pattern shows that 51% of rice straw PhytOC sequestration can be attributed to the Middle-Lower Yangtze Plain due to its vast rice production. PhytOC sequestration is a crucial mechanism of global biogeochemical carbon sink, and practices such as appropriate fertilization application and selection of rice varieties with higher PhytOC concentration may alleviate climate warming.
PB  - Elsevier, Amsterdam
T2  - Science of the Total Environment
T1  - Sequestration potential of phytolith occluded carbon in China's paddy rice (Oryza sativa L.) systems
VL  - 774
DO  - 10.1016/j.scitotenv.2021.145696
ER  - 
@article{
author = "Tan, Li and Fan, Xiaoping and Yan, Guochao and Peng, Miao and Zhang, Nan and Ye, Mujun and Gao, Zixiang and Song, Alin and Nikolic, Miroslav and Liang, Yongchao",
year = "2021",
abstract = "Phytolith-occluded carbon (PhytOC) is resistant to decomposition and, if crop residue biomass is incorporated into soil, has a significant potential for long-term soil carbon sequestration. However, the magnitude and spatial distribution of rice straw PhytOC sequestration remain unclear. Here, we used 279 samplings from nine provinces across China to establish the relationship between soil nutrients availability and rice straw phytoliths concentra-tion, thereby predicting annual PhytOC sequestration of Chinese rice systems. The results suggest that rice straw phytoliths sequester about 0.26 Tg CO2 per yr (8.7 kg CO2 ha(-1) yr(-1)) in China. Great variability of PhytOC exists across the region depending on rice variety. If rice varieties that occluded little PhytOC were replaced by ones with the highest PhytOC concentration, the sequestration rate might be increased to 0.83 Tg CO2 yr(-1) (27.7 kg CO2 ha(-1) yr(-1)). The distribution pattern shows that 51% of rice straw PhytOC sequestration can be attributed to the Middle-Lower Yangtze Plain due to its vast rice production. PhytOC sequestration is a crucial mechanism of global biogeochemical carbon sink, and practices such as appropriate fertilization application and selection of rice varieties with higher PhytOC concentration may alleviate climate warming.",
publisher = "Elsevier, Amsterdam",
journal = "Science of the Total Environment",
title = "Sequestration potential of phytolith occluded carbon in China's paddy rice (Oryza sativa L.) systems",
volume = "774",
doi = "10.1016/j.scitotenv.2021.145696"
}
Tan, L., Fan, X., Yan, G., Peng, M., Zhang, N., Ye, M., Gao, Z., Song, A., Nikolic, M.,& Liang, Y.. (2021). Sequestration potential of phytolith occluded carbon in China's paddy rice (Oryza sativa L.) systems. in Science of the Total Environment
Elsevier, Amsterdam., 774.
https://doi.org/10.1016/j.scitotenv.2021.145696
Tan L, Fan X, Yan G, Peng M, Zhang N, Ye M, Gao Z, Song A, Nikolic M, Liang Y. Sequestration potential of phytolith occluded carbon in China's paddy rice (Oryza sativa L.) systems. in Science of the Total Environment. 2021;774.
doi:10.1016/j.scitotenv.2021.145696 .
Tan, Li, Fan, Xiaoping, Yan, Guochao, Peng, Miao, Zhang, Nan, Ye, Mujun, Gao, Zixiang, Song, Alin, Nikolic, Miroslav, Liang, Yongchao, "Sequestration potential of phytolith occluded carbon in China's paddy rice (Oryza sativa L.) systems" in Science of the Total Environment, 774 (2021),
https://doi.org/10.1016/j.scitotenv.2021.145696 . .

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB