RIMSI - Repository of Institute for Multidisciplinary Research
University of Belgrade - Institute for Multidisciplinary Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Electrochemical deposition and characterization of iridium oxide films on Ti2AlC support for oxygen evolution reaction

Authorized Users Only
2021
Authors
Elezović, Nevenka R.
Zabinski, P.
Lačnjevac, Uroš
Krstajic-Pajic, M. N.
Jović, Vladimir D
Article (Published version)
Metadata
Show full item record
Abstract
Two types of iridium oxide films formed at the Ti-2 AlC substrate were investigated: (1) anodically electrodeposited iridium oxide film from the solution based on IrCl(3)xH(2)O; (2) iridium oxide film prepared by cycling thin layer of electrodeposited Ir in the 0.5 M H2SO4 from - 0.25 to 1.20 V. It was shown that during anodic electrodeposition of iridium oxide film (1) coulombic efficiency decreases with increasing anodic potential, being only 3% atE = 0.7 V vs. SCE and 26% atE = 0.62 V vs. SCE. A pair of peaks corresponding to the transition Ir(III)-oxide/Ir(IV)-oxide was present on the CVs recorded in 0.5 M H2SO4. While cycling pure Ir thin layer in the solution of 0.5 M H2SO4 from - 0.25 to 1.20 V (2) up to 100 cycles, typical CV response was characterized with the prepeak and a pair of peaks corresponding to the Ir(III)/Ir(IV)-oxide transition. With the increase of cycles number to 150, additional peak at potential of 1.0 V appeared. This peak was formed on the account of pair of ...peaks corresponding to the Ir(III)/Ir(IV)-oxide transition. The oxygen evolution reaction (OER) was investigated at both iridium oxide films. It was shown that the Tafel slope for the OER was similar to 40 mV dec(-1)for the first polarization curve, confirming that the rds was a reaction S-OH -> S-O-ads + H++ e(-). As the number of recorded polarization curves increased, the activity of both types of iridium oxide films decreased, due to dissolution of iridium oxide films at the potentials of the OER. It is shown that anodically electrodeposited iridium oxide film is more active for the OER than that obtained by cycling electrodeposited iridium layer. However, both iridium oxide films exhibited insufficient stability.

Keywords:
electrodeposition / iridium oxide / oxygen evolution / acid solution
Source:
Journal of Solid State Electrochemistry, 2021, 25, 1, 351-363
Publisher:
  • Springer, New York
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200053 (University of Belgrade, Institute for Multidisciplinary Research) (RS-200053)

DOI: 10.1007/s10008-020-04816-7

ISSN: 1432-8488

WoS: 000567743900001

Scopus: 2-s2.0-85090455505
[ Google Scholar ]
2
URI
http://rimsi.imsi.bg.ac.rs/handle/123456789/1429
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za multidisciplinarna istraživanja
TY  - JOUR
AU  - Elezović, Nevenka R.
AU  - Zabinski, P.
AU  - Lačnjevac, Uroš
AU  - Krstajic-Pajic, M. N.
AU  - Jović, Vladimir D
PY  - 2021
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1429
AB  - Two types of iridium oxide films formed at the Ti-2 AlC substrate were investigated: (1) anodically electrodeposited iridium oxide film from the solution based on IrCl(3)xH(2)O; (2) iridium oxide film prepared by cycling thin layer of electrodeposited Ir in the 0.5 M H2SO4 from - 0.25 to 1.20 V. It was shown that during anodic electrodeposition of iridium oxide film (1) coulombic efficiency decreases with increasing anodic potential, being only 3% atE = 0.7 V vs. SCE and 26% atE = 0.62 V vs. SCE. A pair of peaks corresponding to the transition Ir(III)-oxide/Ir(IV)-oxide was present on the CVs recorded in 0.5 M H2SO4. While cycling pure Ir thin layer in the solution of 0.5 M H2SO4 from - 0.25 to 1.20 V (2) up to 100 cycles, typical CV response was characterized with the prepeak and a pair of peaks corresponding to the Ir(III)/Ir(IV)-oxide transition. With the increase of cycles number to 150, additional peak at potential of 1.0 V appeared. This peak was formed on the account of pair of peaks corresponding to the Ir(III)/Ir(IV)-oxide transition. The oxygen evolution reaction (OER) was investigated at both iridium oxide films. It was shown that the Tafel slope for the OER was similar to 40 mV dec(-1)for the first polarization curve, confirming that the rds was a reaction S-OH -> S-O-ads + H++ e(-). As the number of recorded polarization curves increased, the activity of both types of iridium oxide films decreased, due to dissolution of iridium oxide films at the potentials of the OER. It is shown that anodically electrodeposited iridium oxide film is more active for the OER than that obtained by cycling electrodeposited iridium layer. However, both iridium oxide films exhibited insufficient stability.
PB  - Springer, New York
T2  - Journal of Solid State Electrochemistry
T1  - Electrochemical deposition and characterization of iridium oxide films on Ti2AlC support for oxygen evolution reaction
EP  - 363
IS  - 1
SP  - 351
VL  - 25
DO  - 10.1007/s10008-020-04816-7
ER  - 
@article{
author = "Elezović, Nevenka R. and Zabinski, P. and Lačnjevac, Uroš and Krstajic-Pajic, M. N. and Jović, Vladimir D",
year = "2021",
abstract = "Two types of iridium oxide films formed at the Ti-2 AlC substrate were investigated: (1) anodically electrodeposited iridium oxide film from the solution based on IrCl(3)xH(2)O; (2) iridium oxide film prepared by cycling thin layer of electrodeposited Ir in the 0.5 M H2SO4 from - 0.25 to 1.20 V. It was shown that during anodic electrodeposition of iridium oxide film (1) coulombic efficiency decreases with increasing anodic potential, being only 3% atE = 0.7 V vs. SCE and 26% atE = 0.62 V vs. SCE. A pair of peaks corresponding to the transition Ir(III)-oxide/Ir(IV)-oxide was present on the CVs recorded in 0.5 M H2SO4. While cycling pure Ir thin layer in the solution of 0.5 M H2SO4 from - 0.25 to 1.20 V (2) up to 100 cycles, typical CV response was characterized with the prepeak and a pair of peaks corresponding to the Ir(III)/Ir(IV)-oxide transition. With the increase of cycles number to 150, additional peak at potential of 1.0 V appeared. This peak was formed on the account of pair of peaks corresponding to the Ir(III)/Ir(IV)-oxide transition. The oxygen evolution reaction (OER) was investigated at both iridium oxide films. It was shown that the Tafel slope for the OER was similar to 40 mV dec(-1)for the first polarization curve, confirming that the rds was a reaction S-OH -> S-O-ads + H++ e(-). As the number of recorded polarization curves increased, the activity of both types of iridium oxide films decreased, due to dissolution of iridium oxide films at the potentials of the OER. It is shown that anodically electrodeposited iridium oxide film is more active for the OER than that obtained by cycling electrodeposited iridium layer. However, both iridium oxide films exhibited insufficient stability.",
publisher = "Springer, New York",
journal = "Journal of Solid State Electrochemistry",
title = "Electrochemical deposition and characterization of iridium oxide films on Ti2AlC support for oxygen evolution reaction",
pages = "363-351",
number = "1",
volume = "25",
doi = "10.1007/s10008-020-04816-7"
}
Elezović, N. R., Zabinski, P., Lačnjevac, U., Krstajic-Pajic, M. N.,& Jović, V. D.. (2021). Electrochemical deposition and characterization of iridium oxide films on Ti2AlC support for oxygen evolution reaction. in Journal of Solid State Electrochemistry
Springer, New York., 25(1), 351-363.
https://doi.org/10.1007/s10008-020-04816-7
Elezović NR, Zabinski P, Lačnjevac U, Krstajic-Pajic MN, Jović VD. Electrochemical deposition and characterization of iridium oxide films on Ti2AlC support for oxygen evolution reaction. in Journal of Solid State Electrochemistry. 2021;25(1):351-363.
doi:10.1007/s10008-020-04816-7 .
Elezović, Nevenka R., Zabinski, P., Lačnjevac, Uroš, Krstajic-Pajic, M. N., Jović, Vladimir D, "Electrochemical deposition and characterization of iridium oxide films on Ti2AlC support for oxygen evolution reaction" in Journal of Solid State Electrochemistry, 25, no. 1 (2021):351-363,
https://doi.org/10.1007/s10008-020-04816-7 . .

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB