RIMSI - Repository of Institute for Multidisciplinary Research
University of Belgrade - Institute for Multidisciplinary Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Interactions of Silicon With Essential and Beneficial Elements in Plants

Thumbnail
2021
1422.pdf (993.4Kb)
Authors
Pavlović, Jelena
Kostić, Ljiljana
Bosnić, Predrag
Kirkby, Ernest A.
Nikolic, Miroslav
Article (Published version)
Metadata
Show full item record
Abstract
Silicon (Si) is not classified as an essential element for plants, but numerous studies have demonstrated its beneficial effects in a variety of species and environmental conditions, including low nutrient availability. Application of Si shows the potential to increase nutrient availability in the rhizosphere and root uptake through complex mechanisms, which still remain unclear. Silicon-mediated transcriptional regulation of element transporters for both root acquisition and tissue homeostasis has recently been suggested as an important strategy, varying in detail depending on plant species and nutritional status. Here, we summarize evidence of Si-mediated acquisition, uptake and translocation of nutrients: nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), boron (B), chlorine (Cl), and nickel (Ni) under both deficiency and excess conditions. In addition, we discuss interactions of Si-with beneficia...l elements: aluminum (Al), sodium (Na), and selenium (Se). This review also highlights further research needed to improve understanding of Si-mediated acquisition and utilization of nutrients and vice versa nutrient status-mediated Si acquisition and transport, both processes which are of high importance for agronomic practice (e.g., reduced use of fertilizers and pesticides).

Keywords:
transporters / toxicity / silicon / nutrients / deficiency / beneficial elements
Source:
Frontiers in Plant Science, 2021, 12
Publisher:
  • Frontiers Media Sa, Lausanne
Funding / projects:
  • 451-039/2021-14

DOI: 10.3389/fpls.2021.697592

ISSN: 1664-462X

PubMed: 34249069

WoS: 000670241300001

Scopus: 2-s2.0-85109373382
[ Google Scholar ]
53
2
URI
http://rimsi.imsi.bg.ac.rs/handle/123456789/1425
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za multidisciplinarna istraživanja
TY  - JOUR
AU  - Pavlović, Jelena
AU  - Kostić, Ljiljana
AU  - Bosnić, Predrag
AU  - Kirkby, Ernest A.
AU  - Nikolic, Miroslav
PY  - 2021
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1425
AB  - Silicon (Si) is not classified as an essential element for plants, but numerous studies have demonstrated its beneficial effects in a variety of species and environmental conditions, including low nutrient availability. Application of Si shows the potential to increase nutrient availability in the rhizosphere and root uptake through complex mechanisms, which still remain unclear. Silicon-mediated transcriptional regulation of element transporters for both root acquisition and tissue homeostasis has recently been suggested as an important strategy, varying in detail depending on plant species and nutritional status. Here, we summarize evidence of Si-mediated acquisition, uptake and translocation of nutrients: nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), boron (B), chlorine (Cl), and nickel (Ni) under both deficiency and excess conditions. In addition, we discuss interactions of Si-with beneficial elements: aluminum (Al), sodium (Na), and selenium (Se). This review also highlights further research needed to improve understanding of Si-mediated acquisition and utilization of nutrients and vice versa nutrient status-mediated Si acquisition and transport, both processes which are of high importance for agronomic practice (e.g., reduced use of fertilizers and pesticides).
PB  - Frontiers Media Sa, Lausanne
T2  - Frontiers in Plant Science
T1  - Interactions of Silicon With Essential and Beneficial Elements in Plants
VL  - 12
DO  - 10.3389/fpls.2021.697592
ER  - 
@article{
author = "Pavlović, Jelena and Kostić, Ljiljana and Bosnić, Predrag and Kirkby, Ernest A. and Nikolic, Miroslav",
year = "2021",
abstract = "Silicon (Si) is not classified as an essential element for plants, but numerous studies have demonstrated its beneficial effects in a variety of species and environmental conditions, including low nutrient availability. Application of Si shows the potential to increase nutrient availability in the rhizosphere and root uptake through complex mechanisms, which still remain unclear. Silicon-mediated transcriptional regulation of element transporters for both root acquisition and tissue homeostasis has recently been suggested as an important strategy, varying in detail depending on plant species and nutritional status. Here, we summarize evidence of Si-mediated acquisition, uptake and translocation of nutrients: nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), boron (B), chlorine (Cl), and nickel (Ni) under both deficiency and excess conditions. In addition, we discuss interactions of Si-with beneficial elements: aluminum (Al), sodium (Na), and selenium (Se). This review also highlights further research needed to improve understanding of Si-mediated acquisition and utilization of nutrients and vice versa nutrient status-mediated Si acquisition and transport, both processes which are of high importance for agronomic practice (e.g., reduced use of fertilizers and pesticides).",
publisher = "Frontiers Media Sa, Lausanne",
journal = "Frontiers in Plant Science",
title = "Interactions of Silicon With Essential and Beneficial Elements in Plants",
volume = "12",
doi = "10.3389/fpls.2021.697592"
}
Pavlović, J., Kostić, L., Bosnić, P., Kirkby, E. A.,& Nikolic, M.. (2021). Interactions of Silicon With Essential and Beneficial Elements in Plants. in Frontiers in Plant Science
Frontiers Media Sa, Lausanne., 12.
https://doi.org/10.3389/fpls.2021.697592
Pavlović J, Kostić L, Bosnić P, Kirkby EA, Nikolic M. Interactions of Silicon With Essential and Beneficial Elements in Plants. in Frontiers in Plant Science. 2021;12.
doi:10.3389/fpls.2021.697592 .
Pavlović, Jelena, Kostić, Ljiljana, Bosnić, Predrag, Kirkby, Ernest A., Nikolic, Miroslav, "Interactions of Silicon With Essential and Beneficial Elements in Plants" in Frontiers in Plant Science, 12 (2021),
https://doi.org/10.3389/fpls.2021.697592 . .

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB