Toxicity investigation of CeO2 nanoparticles coated with glucose and exopolysaccharides levan and pullulan on the bacterium Vibrio fischeri and aquatic organisms Daphnia magna and Danio rerio
Authorized Users Only
2021
Authors
Milenković, Ivana
Radotić, Ksenija

Despotović, Jovana

Loncarević, Branka

Ljesević, Marija

Spasić, Slađana

Nikolic, Aleksandra

Beskoski, Vladimir P.

Article (Published version)

Metadata
Show full item recordAbstract
Cerium oxide nanoparticles (nCeO(2)) have widespread applications, but they can be hazardous to the environment. Some reports indicate the toxic effect of nCeO(2) on tested animals, but literature data are mainly contradictory. Coating of nCeO(2) can improve their suspension stability and change their interaction with the environment, which can consequently decrease their toxic effects. Herein, the exopolysaccharides levan and pullulan, due to their high water solubility, biocompatibility, and ability to form film, were used to coat nCeO(2). Additionally, the monosaccharide glucose was used, since it is a common material for nanoparticle coating. This is the first study investigating the impact of carbohydrate-coated nCeO(2) in comparison to uncoated nCeO(2) using different model organisms. The aim of this study was to test the acute toxicity of carbohydrate-coated nCeO(2) on the bacterium Vibrio fischeri NRRL B-11177, the crustacean Daphnia magna, and zebrafish Danio rerio. The second... aim was to investigate the effects of nCeO(2) on respiration in Daphnia magna which was performed for the first time. Finally, it was important to see the relation between Ce bioaccumulation in Daphnia magna and Danio rerio and other investigated parameters. Our results revealed that the coating decreased the toxicity of nCeO(2) on Vibrio fischeri. The coating of nCeO(2) did not affect the nanoparticles' accumulation/adsorption or mortality in Daphnia magna or Danio rerio. Monitoring of respiration in Daphnia magna revealed changes in CO2 production after exposure to coated nCeO(2), while the crustacean's O-2 consumption was not affected by any of the coated nCeO(2). In summary, this study revealed that, at 200 mg L-1 uncoated and carbohydrate-coated nCeO(2) are not toxic for the tested organisms, however, the CO2 production in Daphnia magna is different when they are treated with coated and uncoated nCeO(2). The highest production was in glucose and levan-coated nCeO(2) according to their highest suspension stability. Daphnia magna (D. magna), Danio rerio (D. rerio), Vibrio fischeri (V. fischeri)
Keywords:
Vibrio fischeri / Nanoparticles / Daphnia magna / Danio rerio / Coating / CeO2Source:
Aquatic Toxicology, 2021, 236Publisher:
- Elsevier, Amsterdam
Funding / projects:
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200042 (University of Belgrade, Institute of Molecular Genetics and Genetic Engineering) (RS-200042)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200053 (University of Belgrade, Institute for Multidisciplinary Research) (RS-200053)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) (RS-200026)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200168 (University of Belgrade, Faculty of Chemistry) (RS-200168)
DOI: 10.1016/j.aquatox.2021.105867
ISSN: 0166-445X
PubMed: 34052720
WoS: 000657603100005
Scopus: 2-s2.0-85107773767
Collections
Institution/Community
Institut za multidisciplinarna istraživanjaTY - JOUR AU - Milenković, Ivana AU - Radotić, Ksenija AU - Despotović, Jovana AU - Loncarević, Branka AU - Ljesević, Marija AU - Spasić, Slađana AU - Nikolic, Aleksandra AU - Beskoski, Vladimir P. PY - 2021 UR - http://rimsi.imsi.bg.ac.rs/handle/123456789/1423 AB - Cerium oxide nanoparticles (nCeO(2)) have widespread applications, but they can be hazardous to the environment. Some reports indicate the toxic effect of nCeO(2) on tested animals, but literature data are mainly contradictory. Coating of nCeO(2) can improve their suspension stability and change their interaction with the environment, which can consequently decrease their toxic effects. Herein, the exopolysaccharides levan and pullulan, due to their high water solubility, biocompatibility, and ability to form film, were used to coat nCeO(2). Additionally, the monosaccharide glucose was used, since it is a common material for nanoparticle coating. This is the first study investigating the impact of carbohydrate-coated nCeO(2) in comparison to uncoated nCeO(2) using different model organisms. The aim of this study was to test the acute toxicity of carbohydrate-coated nCeO(2) on the bacterium Vibrio fischeri NRRL B-11177, the crustacean Daphnia magna, and zebrafish Danio rerio. The second aim was to investigate the effects of nCeO(2) on respiration in Daphnia magna which was performed for the first time. Finally, it was important to see the relation between Ce bioaccumulation in Daphnia magna and Danio rerio and other investigated parameters. Our results revealed that the coating decreased the toxicity of nCeO(2) on Vibrio fischeri. The coating of nCeO(2) did not affect the nanoparticles' accumulation/adsorption or mortality in Daphnia magna or Danio rerio. Monitoring of respiration in Daphnia magna revealed changes in CO2 production after exposure to coated nCeO(2), while the crustacean's O-2 consumption was not affected by any of the coated nCeO(2). In summary, this study revealed that, at 200 mg L-1 uncoated and carbohydrate-coated nCeO(2) are not toxic for the tested organisms, however, the CO2 production in Daphnia magna is different when they are treated with coated and uncoated nCeO(2). The highest production was in glucose and levan-coated nCeO(2) according to their highest suspension stability. Daphnia magna (D. magna), Danio rerio (D. rerio), Vibrio fischeri (V. fischeri) PB - Elsevier, Amsterdam T2 - Aquatic Toxicology T1 - Toxicity investigation of CeO2 nanoparticles coated with glucose and exopolysaccharides levan and pullulan on the bacterium Vibrio fischeri and aquatic organisms Daphnia magna and Danio rerio VL - 236 DO - 10.1016/j.aquatox.2021.105867 ER -
@article{ author = "Milenković, Ivana and Radotić, Ksenija and Despotović, Jovana and Loncarević, Branka and Ljesević, Marija and Spasić, Slađana and Nikolic, Aleksandra and Beskoski, Vladimir P.", year = "2021", abstract = "Cerium oxide nanoparticles (nCeO(2)) have widespread applications, but they can be hazardous to the environment. Some reports indicate the toxic effect of nCeO(2) on tested animals, but literature data are mainly contradictory. Coating of nCeO(2) can improve their suspension stability and change their interaction with the environment, which can consequently decrease their toxic effects. Herein, the exopolysaccharides levan and pullulan, due to their high water solubility, biocompatibility, and ability to form film, were used to coat nCeO(2). Additionally, the monosaccharide glucose was used, since it is a common material for nanoparticle coating. This is the first study investigating the impact of carbohydrate-coated nCeO(2) in comparison to uncoated nCeO(2) using different model organisms. The aim of this study was to test the acute toxicity of carbohydrate-coated nCeO(2) on the bacterium Vibrio fischeri NRRL B-11177, the crustacean Daphnia magna, and zebrafish Danio rerio. The second aim was to investigate the effects of nCeO(2) on respiration in Daphnia magna which was performed for the first time. Finally, it was important to see the relation between Ce bioaccumulation in Daphnia magna and Danio rerio and other investigated parameters. Our results revealed that the coating decreased the toxicity of nCeO(2) on Vibrio fischeri. The coating of nCeO(2) did not affect the nanoparticles' accumulation/adsorption or mortality in Daphnia magna or Danio rerio. Monitoring of respiration in Daphnia magna revealed changes in CO2 production after exposure to coated nCeO(2), while the crustacean's O-2 consumption was not affected by any of the coated nCeO(2). In summary, this study revealed that, at 200 mg L-1 uncoated and carbohydrate-coated nCeO(2) are not toxic for the tested organisms, however, the CO2 production in Daphnia magna is different when they are treated with coated and uncoated nCeO(2). The highest production was in glucose and levan-coated nCeO(2) according to their highest suspension stability. Daphnia magna (D. magna), Danio rerio (D. rerio), Vibrio fischeri (V. fischeri)", publisher = "Elsevier, Amsterdam", journal = "Aquatic Toxicology", title = "Toxicity investigation of CeO2 nanoparticles coated with glucose and exopolysaccharides levan and pullulan on the bacterium Vibrio fischeri and aquatic organisms Daphnia magna and Danio rerio", volume = "236", doi = "10.1016/j.aquatox.2021.105867" }
Milenković, I., Radotić, K., Despotović, J., Loncarević, B., Ljesević, M., Spasić, S., Nikolic, A.,& Beskoski, V. P.. (2021). Toxicity investigation of CeO2 nanoparticles coated with glucose and exopolysaccharides levan and pullulan on the bacterium Vibrio fischeri and aquatic organisms Daphnia magna and Danio rerio. in Aquatic Toxicology Elsevier, Amsterdam., 236. https://doi.org/10.1016/j.aquatox.2021.105867
Milenković I, Radotić K, Despotović J, Loncarević B, Ljesević M, Spasić S, Nikolic A, Beskoski VP. Toxicity investigation of CeO2 nanoparticles coated with glucose and exopolysaccharides levan and pullulan on the bacterium Vibrio fischeri and aquatic organisms Daphnia magna and Danio rerio. in Aquatic Toxicology. 2021;236. doi:10.1016/j.aquatox.2021.105867 .
Milenković, Ivana, Radotić, Ksenija, Despotović, Jovana, Loncarević, Branka, Ljesević, Marija, Spasić, Slađana, Nikolic, Aleksandra, Beskoski, Vladimir P., "Toxicity investigation of CeO2 nanoparticles coated with glucose and exopolysaccharides levan and pullulan on the bacterium Vibrio fischeri and aquatic organisms Daphnia magna and Danio rerio" in Aquatic Toxicology, 236 (2021), https://doi.org/10.1016/j.aquatox.2021.105867 . .