RIMSI - Repository of Institute for Multidisciplinary Research
University of Belgrade - Institute for Multidisciplinary Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Antagonistic Interaction between Phosphinothricin and Nepeta rtanjensis Essential Oil Affected Ammonium Metabolism and Antioxidant Defense of Arabidopsis Grown In Vitro

Thumbnail
2021
1395.pdf (3.961Mb)
Authors
Dmitrović, Slavica
Dragicević, Milan
Savić, Jelena
Milutinović, Milica
Živković, Suzana
Maksimović, Vuk
Matekalo, Dragana
Perisic, Mirjana
Misic, Danijela
Article (Published version)
Metadata
Show full item record
Abstract
Phosphinothricin (PPT) is one of the most widely used herbicides. PTT targets glutamine synthetase (GS) activity in plants, and its phytotoxicity is ascribed to ammonium accumulation and reactive oxygen species bursts, which drives rapid lipid peroxidation of cell membranes. In agricultural fields, PPT is extensively sprayed on plant foliage; however, a portion of the herbicide reaches the soil. According to the present study, PPT absorbed via roots can be phytotoxic to Arabidopsis, inducing more adverse effects in roots than in shoots. Alterations in plant physiology caused by 10 days exposure to herbicide via roots are reflected through growth suppression, reduced chlorophyll content, perturbations in the sugar and organic acid metabolism, modifications in the activities and abundances of GS, catalase, peroxidase, and superoxide dismutase. Antagonistic interaction of Nepeta rtanjensis essential oil (NrEO) and PPT, emphasizes the existence of complex control mechanisms at the transcri...ptional and posttranslational level, which result in the mitigation of PPT-induced ammonium toxicity and in providing more efficient antioxidant defense of plants. Simultaneous application of the two agents in the field cannot be recommended; however, NrEO might be considered as the PPT post-treatment for reducing harmful effects of herbicide residues in the soil on non-target plants.

Keywords:
phosphinothricin / Nepeta / glutamine synthetase / essential oil / BASTA / Arabidopsis / antioxidant defense / antagonism / ammonium toxicity
Source:
Plants-Basel, 2021, 10, 1
Publisher:
  • MDPI, Basel
Funding / projects:
  • Physiological, chemical and molecular analysis of the diversity of selected rare and endangered plant species and application of biotechnology for ex situ conservation and production of biologically active compounds (RS-173024)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200007 (University of Belgrade, Institute for Biological Research 'Siniša Stanković') (RS-200007)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200053 (University of Belgrade, Institute for Multidisciplinary Research) (RS-200053)

DOI: 10.3390/plants10010142

ISSN: 2223-7747

PubMed: 33445496

WoS: 000610689200001

Scopus: 2-s2.0-85099247280
[ Google Scholar ]
1
1
URI
http://rimsi.imsi.bg.ac.rs/handle/123456789/1398
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za multidisciplinarna istraživanja
TY  - JOUR
AU  - Dmitrović, Slavica
AU  - Dragicević, Milan
AU  - Savić, Jelena
AU  - Milutinović, Milica
AU  - Živković, Suzana
AU  - Maksimović, Vuk
AU  - Matekalo, Dragana
AU  - Perisic, Mirjana
AU  - Misic, Danijela
PY  - 2021
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1398
AB  - Phosphinothricin (PPT) is one of the most widely used herbicides. PTT targets glutamine synthetase (GS) activity in plants, and its phytotoxicity is ascribed to ammonium accumulation and reactive oxygen species bursts, which drives rapid lipid peroxidation of cell membranes. In agricultural fields, PPT is extensively sprayed on plant foliage; however, a portion of the herbicide reaches the soil. According to the present study, PPT absorbed via roots can be phytotoxic to Arabidopsis, inducing more adverse effects in roots than in shoots. Alterations in plant physiology caused by 10 days exposure to herbicide via roots are reflected through growth suppression, reduced chlorophyll content, perturbations in the sugar and organic acid metabolism, modifications in the activities and abundances of GS, catalase, peroxidase, and superoxide dismutase. Antagonistic interaction of Nepeta rtanjensis essential oil (NrEO) and PPT, emphasizes the existence of complex control mechanisms at the transcriptional and posttranslational level, which result in the mitigation of PPT-induced ammonium toxicity and in providing more efficient antioxidant defense of plants. Simultaneous application of the two agents in the field cannot be recommended; however, NrEO might be considered as the PPT post-treatment for reducing harmful effects of herbicide residues in the soil on non-target plants.
PB  - MDPI, Basel
T2  - Plants-Basel
T1  - Antagonistic Interaction between Phosphinothricin and Nepeta rtanjensis Essential Oil Affected Ammonium Metabolism and Antioxidant Defense of Arabidopsis Grown In Vitro
IS  - 1
VL  - 10
DO  - 10.3390/plants10010142
ER  - 
@article{
author = "Dmitrović, Slavica and Dragicević, Milan and Savić, Jelena and Milutinović, Milica and Živković, Suzana and Maksimović, Vuk and Matekalo, Dragana and Perisic, Mirjana and Misic, Danijela",
year = "2021",
abstract = "Phosphinothricin (PPT) is one of the most widely used herbicides. PTT targets glutamine synthetase (GS) activity in plants, and its phytotoxicity is ascribed to ammonium accumulation and reactive oxygen species bursts, which drives rapid lipid peroxidation of cell membranes. In agricultural fields, PPT is extensively sprayed on plant foliage; however, a portion of the herbicide reaches the soil. According to the present study, PPT absorbed via roots can be phytotoxic to Arabidopsis, inducing more adverse effects in roots than in shoots. Alterations in plant physiology caused by 10 days exposure to herbicide via roots are reflected through growth suppression, reduced chlorophyll content, perturbations in the sugar and organic acid metabolism, modifications in the activities and abundances of GS, catalase, peroxidase, and superoxide dismutase. Antagonistic interaction of Nepeta rtanjensis essential oil (NrEO) and PPT, emphasizes the existence of complex control mechanisms at the transcriptional and posttranslational level, which result in the mitigation of PPT-induced ammonium toxicity and in providing more efficient antioxidant defense of plants. Simultaneous application of the two agents in the field cannot be recommended; however, NrEO might be considered as the PPT post-treatment for reducing harmful effects of herbicide residues in the soil on non-target plants.",
publisher = "MDPI, Basel",
journal = "Plants-Basel",
title = "Antagonistic Interaction between Phosphinothricin and Nepeta rtanjensis Essential Oil Affected Ammonium Metabolism and Antioxidant Defense of Arabidopsis Grown In Vitro",
number = "1",
volume = "10",
doi = "10.3390/plants10010142"
}
Dmitrović, S., Dragicević, M., Savić, J., Milutinović, M., Živković, S., Maksimović, V., Matekalo, D., Perisic, M.,& Misic, D.. (2021). Antagonistic Interaction between Phosphinothricin and Nepeta rtanjensis Essential Oil Affected Ammonium Metabolism and Antioxidant Defense of Arabidopsis Grown In Vitro. in Plants-Basel
MDPI, Basel., 10(1).
https://doi.org/10.3390/plants10010142
Dmitrović S, Dragicević M, Savić J, Milutinović M, Živković S, Maksimović V, Matekalo D, Perisic M, Misic D. Antagonistic Interaction between Phosphinothricin and Nepeta rtanjensis Essential Oil Affected Ammonium Metabolism and Antioxidant Defense of Arabidopsis Grown In Vitro. in Plants-Basel. 2021;10(1).
doi:10.3390/plants10010142 .
Dmitrović, Slavica, Dragicević, Milan, Savić, Jelena, Milutinović, Milica, Živković, Suzana, Maksimović, Vuk, Matekalo, Dragana, Perisic, Mirjana, Misic, Danijela, "Antagonistic Interaction between Phosphinothricin and Nepeta rtanjensis Essential Oil Affected Ammonium Metabolism and Antioxidant Defense of Arabidopsis Grown In Vitro" in Plants-Basel, 10, no. 1 (2021),
https://doi.org/10.3390/plants10010142 . .

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB