RIMSI - Repository of Institute for Multidisciplinary Research
University of Belgrade - Institute for Multidisciplinary Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

New inversion boundary structure in Sb-doped ZnO predicted by DFT calculations and confirmed by experimental HRTEM

Thumbnail
2020
1373.pdf (4.958Mb)
Authors
Ribić, Vesna
Recnik, Aleksander
Komelj, Matej
Kokalj, Anton
Branković, Zorica
Zlatović, Mario
Branković, Goran
Article (Published version)
Metadata
Show full item record
Abstract
Today, ab-initio calculations are becoming a powerful tool to perform virtual experiments that have the capacity to predict and to reproduce experimentally observed non-periodic features, such as interfaces, that are responsible for quantum properties of materials. In our paper we investigate 2D quantum-well structures, known as inversion boundaries OM. Combining atomistic modeling, DFT calculations and HRTEM analysis we provide a new fundamental insight into the structure and stability of Sb-rich basal-plane IBs in ZnO. DFT screening for potential IB model was based on the known stacking deviations in originating wurtzite structure. The results show that the model with A beta-B alpha-A beta C-gamma B-beta C sequence (IB3) is the most stable translation for Sb-doping, as opposed to previously accepted A beta-B alpha-A beta C-gamma A-alpha C (IB2) model. The key to the stability of IB structures has been found to lie in their cationic stacking. We show that the energies of constituting ...stacking segments can be used to predict the stability of new IB structures without the need of further ab-initio calculations. DFT optimized models of IBs accurately predict the experimentally observed IB structures with lateral relaxations down to a precision of similar to 1 pm. The newly determined cation sublattice expansions for experimentally confirmed IB2 and IB3 models, Delta(IB(zn-zn)) are +81 pm and +77 pm, whereas the corresponding O-sublattice contractions Delta(IB(0-0)) are -53 pm and -57 pm, respectively. The refined structures will help to solve open questions related to their role in electron transport, phonon scattering, p-type conductivity, affinity of dopants to generate IBs and the underlying formation mechanisms, whereas the excellent match between the calculations and experiment demonstrated in our study opens new perspectives for prediction of such properties from first principles.

Keywords:
Transmission electron microscopy (TEM) / Inversion domain boundary (IDB) / Interfaces (twin boundaries, stacking faults) / Interface energy / Density functional theory (DFT)
Source:
Acta Materialia, 2020, 199, 633-648
Publisher:
  • Pergamon-Elsevier Science Ltd, Oxford
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200053 (University of Belgrade, Institute for Multidisciplinary Research) (RS-200053)
  • Slovenian Research AgencySlovenian Research Agency - Slovenia [P2-0084]
  • Serbian-Slovenian bilateral Project: `Stability via doping: Experimental and theoretical design of functional oxide ceramics' [BI-RS/18-19-026]
  • NSC cluster at IJS (Ljubljana)

DOI: 10.1016/j.actamat.2020.08.035

ISSN: 1359-6454

WoS: 000577994500047

Scopus: 2-s2.0-85090293121
[ Google Scholar ]
12
8
URI
http://rimsi.imsi.bg.ac.rs/handle/123456789/1376
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za multidisciplinarna istraživanja
TY  - JOUR
AU  - Ribić, Vesna
AU  - Recnik, Aleksander
AU  - Komelj, Matej
AU  - Kokalj, Anton
AU  - Branković, Zorica
AU  - Zlatović, Mario
AU  - Branković, Goran
PY  - 2020
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1376
AB  - Today, ab-initio calculations are becoming a powerful tool to perform virtual experiments that have the capacity to predict and to reproduce experimentally observed non-periodic features, such as interfaces, that are responsible for quantum properties of materials. In our paper we investigate 2D quantum-well structures, known as inversion boundaries OM. Combining atomistic modeling, DFT calculations and HRTEM analysis we provide a new fundamental insight into the structure and stability of Sb-rich basal-plane IBs in ZnO. DFT screening for potential IB model was based on the known stacking deviations in originating wurtzite structure. The results show that the model with A beta-B alpha-A beta C-gamma B-beta C sequence (IB3) is the most stable translation for Sb-doping, as opposed to previously accepted A beta-B alpha-A beta C-gamma A-alpha C (IB2) model. The key to the stability of IB structures has been found to lie in their cationic stacking. We show that the energies of constituting stacking segments can be used to predict the stability of new IB structures without the need of further ab-initio calculations. DFT optimized models of IBs accurately predict the experimentally observed IB structures with lateral relaxations down to a precision of similar to 1 pm. The newly determined cation sublattice expansions for experimentally confirmed IB2 and IB3 models, Delta(IB(zn-zn)) are +81 pm and +77 pm, whereas the corresponding O-sublattice contractions Delta(IB(0-0)) are -53 pm and -57 pm, respectively. The refined structures will help to solve open questions related to their role in electron transport, phonon scattering, p-type conductivity, affinity of dopants to generate IBs and the underlying formation mechanisms, whereas the excellent match between the calculations and experiment demonstrated in our study opens new perspectives for prediction of such properties from first principles.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Acta Materialia
T1  - New inversion boundary structure in Sb-doped ZnO predicted by DFT calculations and confirmed by experimental HRTEM
EP  - 648
SP  - 633
VL  - 199
DO  - 10.1016/j.actamat.2020.08.035
ER  - 
@article{
author = "Ribić, Vesna and Recnik, Aleksander and Komelj, Matej and Kokalj, Anton and Branković, Zorica and Zlatović, Mario and Branković, Goran",
year = "2020",
abstract = "Today, ab-initio calculations are becoming a powerful tool to perform virtual experiments that have the capacity to predict and to reproduce experimentally observed non-periodic features, such as interfaces, that are responsible for quantum properties of materials. In our paper we investigate 2D quantum-well structures, known as inversion boundaries OM. Combining atomistic modeling, DFT calculations and HRTEM analysis we provide a new fundamental insight into the structure and stability of Sb-rich basal-plane IBs in ZnO. DFT screening for potential IB model was based on the known stacking deviations in originating wurtzite structure. The results show that the model with A beta-B alpha-A beta C-gamma B-beta C sequence (IB3) is the most stable translation for Sb-doping, as opposed to previously accepted A beta-B alpha-A beta C-gamma A-alpha C (IB2) model. The key to the stability of IB structures has been found to lie in their cationic stacking. We show that the energies of constituting stacking segments can be used to predict the stability of new IB structures without the need of further ab-initio calculations. DFT optimized models of IBs accurately predict the experimentally observed IB structures with lateral relaxations down to a precision of similar to 1 pm. The newly determined cation sublattice expansions for experimentally confirmed IB2 and IB3 models, Delta(IB(zn-zn)) are +81 pm and +77 pm, whereas the corresponding O-sublattice contractions Delta(IB(0-0)) are -53 pm and -57 pm, respectively. The refined structures will help to solve open questions related to their role in electron transport, phonon scattering, p-type conductivity, affinity of dopants to generate IBs and the underlying formation mechanisms, whereas the excellent match between the calculations and experiment demonstrated in our study opens new perspectives for prediction of such properties from first principles.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Acta Materialia",
title = "New inversion boundary structure in Sb-doped ZnO predicted by DFT calculations and confirmed by experimental HRTEM",
pages = "648-633",
volume = "199",
doi = "10.1016/j.actamat.2020.08.035"
}
Ribić, V., Recnik, A., Komelj, M., Kokalj, A., Branković, Z., Zlatović, M.,& Branković, G.. (2020). New inversion boundary structure in Sb-doped ZnO predicted by DFT calculations and confirmed by experimental HRTEM. in Acta Materialia
Pergamon-Elsevier Science Ltd, Oxford., 199, 633-648.
https://doi.org/10.1016/j.actamat.2020.08.035
Ribić V, Recnik A, Komelj M, Kokalj A, Branković Z, Zlatović M, Branković G. New inversion boundary structure in Sb-doped ZnO predicted by DFT calculations and confirmed by experimental HRTEM. in Acta Materialia. 2020;199:633-648.
doi:10.1016/j.actamat.2020.08.035 .
Ribić, Vesna, Recnik, Aleksander, Komelj, Matej, Kokalj, Anton, Branković, Zorica, Zlatović, Mario, Branković, Goran, "New inversion boundary structure in Sb-doped ZnO predicted by DFT calculations and confirmed by experimental HRTEM" in Acta Materialia, 199 (2020):633-648,
https://doi.org/10.1016/j.actamat.2020.08.035 . .

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB