Приказ основних података о документу

dc.creatorLačnjevac, Uroš
dc.creatorVasilic, Rastko
dc.creatorDobrota, Ana
dc.creatorDurdic, Sladana
dc.creatorTomanec, Ondrej
dc.creatorZboril, Radek
dc.creatorMohajernia, Shiva
dc.creatorNhat, Truong Nguyen
dc.creatorSkorodumova, Natalia
dc.creatorManojlović, Dragan
dc.creatorElezović, Nevenka R.
dc.creatorPasti, Igor
dc.creatorSchmuki, Patrik
dc.date.accessioned2022-04-05T15:29:58Z
dc.date.available2022-04-05T15:29:58Z
dc.date.issued2020
dc.identifier.issn2050-7488
dc.identifier.urihttp://rimsi.imsi.bg.ac.rs/handle/123456789/1373
dc.description.abstractDeveloping ultraefficient electrocatalytic materials for the hydrogen evolution reaction (HER) with low content of expensive platinum group metals (PGMs) via low-energy-input procedures is the key to the successful commercialization of green water electrolysis technologies for sustainable production of high-purity hydrogen. In this study, we report a facile room-temperature synthesis of ultrafine metallic Ir nanoparticles on conductive, proton-intercalated TiO2 nanotube (H-TNT) arrays via galvanic displacement. A series of experiments demonstrate that a controlled transformation of the H-TNT surface microstructure from neat open-top tubes to disordered nanostripe bundles ("nanograss") is highly beneficial for providing an abundance of exposed Ir active sites. Consequently, for nanograss-engineered composites, outstanding HER activity metrics are achieved even at very low Ir(iii) precursor concentrations. An optimum Ir"TNT cathode loaded with 5.7 mu g(Ir) cm(-2) exhibits an overpotential of -63 mV at -100 mA cm(-2) and a mass activity of 34 A mg(Ir)(-1) at -80 mV under acidic conditions, along with excellent catalytic durability and structural integrity. Density functional theory (DFT) simulations reveal that the hydrogen-rich TiO2 surface not only stabilizes the deposited Ir and weakens its H binding strength to a moderate intensity, but also actively takes part in the HER mechanism by refreshing the Ir catalytic sites near the Ir|H-TiO2 interface, thus substantially promoting H-2 generation. The comprehensive characterization combined with theory provides an in-depth understanding of the electrocatalytic behavior of H-TNT supported PGM nanoparticles and demonstrates their high potential as competitive electrocatalyst systems for the HER.en
dc.publisherRoyal Soc Chemistry, Cambridge
dc.relationRepublic of Serbia [22]
dc.relationFederal Republic of Germany [22]
dc.relationERCEuropean Research Council (ERC)European Commission
dc.relationDFGGerman Research Foundation (DFG)European Commission
dc.relationSwedish Research CouncilSwedish Research CouncilEuropean Commission [2018-05973]
dc.relationCOST actionEuropean Cooperation in Science and Technology (COST) [MP1407]
dc.relationinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/172054/RS//
dc.relationinfo:eu-repo/grantAgreement/MESTD/inst-2020/200053/RS//
dc.relationinfo:eu-repo/grantAgreement/MESTD/inst-2020/200146/RS//
dc.rightsrestrictedAccess
dc.sourceJournal of Materials Chemistry A
dc.subjectcatalyst-support interaction
dc.subjectheterostructure
dc.subjectDFT calculation
dc.subjecthydrogen evolution reaction
dc.subjectreaction mechanism
dc.titleHigh-performance hydrogen evolution electrocatalysis using proton-intercalated TiO2 nanotube arrays as interactive supports for Ir nanoparticlesen
dc.typearticle
dc.rights.licenseARR
dc.citation.epage22790
dc.citation.issue43
dc.citation.other8(43): 22773-22790
dc.citation.rankaM21
dc.citation.spage22773
dc.citation.volume8
dc.identifier.doi10.1039/d0ta07492f
dc.identifier.scopus2-s2.0-85096105811
dc.identifier.wos000589418400026
dc.type.versionpublishedVersion


Документи

Thumbnail

Овај документ се појављује у следећим колекцијама

Приказ основних података о документу