RIMSI - Repository of Institute for Multidisciplinary Research
University of Belgrade - Institute for Multidisciplinary Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mechanisms of detoxification of high copper concentrations by the microalga Chlorella sorokiniana

Authorized Users Only
2020
Authors
Vojvodić, Snežana
Stanić, Marina
Zechmann, Bernd
Ducic, Tanja
Žižić, Milan
Dimitrijević, Milena
Danilovic-Luković, Jelena
Milenković, Milica R.
Pittman, Jon K.
Spasojević, Ivan
Article (Published version)
Metadata
Show full item record
Abstract
Microalgae have evolved mechanisms to respond to changes in copper ion availability, which are very important for normal cellular function, to tolerate metal pollution of aquatic ecosystems, and for modulation of copper bioavailability and toxicity to other organisms. Knowledge and application of these mechanisms will benefit the use of microalgae in wastewater processing and biomass production, and the use of copper compounds in the suppression of harmful algal blooms. Here, using electron microscopy, synchrotron radiation-based Fourier transform infrared spectroscopy, electron paramagnetic resonance spectroscopy, and X-ray absorption fine structure spectroscopy, we show that the microalga Chlorella sorokiniana responds promptly to Cu2+ at high non-toxic concentration, by mucilage release, alterations in the architecture of the outer cell wall layer and lipid structures, and polyphosphate accumulation within mucilage matrix. The main route of copper detoxification is by Cu2+ coordinat...ion to polyphosphates in penta-coordinated geometry. The sequestrated Cu2+ was accessible and could be released by extracellular chelating agents. Finally, the reduction in Cu2+ to Cu1+ appears also to take place. These findings reveal the biochemical basis of the capacity of microalgae to adapt to high external copper concentrations and to serve as both, sinks and pools of environmental copper.

Source:
Biochemical Journal, 2020, 477, 19, 3729-3741
Publisher:
  • Portland Press Ltd, London
Funding / projects:
  • NATO Science for Peace and Security Programme [G5320]

DOI: 10.1042/BCJ20200600

ISSN: 0264-6021

PubMed: 32936286

WoS: 000582387100006

Scopus: 2-s2.0-85092680949
[ Google Scholar ]
6
4
URI
http://rimsi.imsi.bg.ac.rs/handle/123456789/1354
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za multidisciplinarna istraživanja
TY  - JOUR
AU  - Vojvodić, Snežana
AU  - Stanić, Marina
AU  - Zechmann, Bernd
AU  - Ducic, Tanja
AU  - Žižić, Milan
AU  - Dimitrijević, Milena
AU  - Danilovic-Luković, Jelena
AU  - Milenković, Milica R.
AU  - Pittman, Jon K.
AU  - Spasojević, Ivan
PY  - 2020
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1354
AB  - Microalgae have evolved mechanisms to respond to changes in copper ion availability, which are very important for normal cellular function, to tolerate metal pollution of aquatic ecosystems, and for modulation of copper bioavailability and toxicity to other organisms. Knowledge and application of these mechanisms will benefit the use of microalgae in wastewater processing and biomass production, and the use of copper compounds in the suppression of harmful algal blooms. Here, using electron microscopy, synchrotron radiation-based Fourier transform infrared spectroscopy, electron paramagnetic resonance spectroscopy, and X-ray absorption fine structure spectroscopy, we show that the microalga Chlorella sorokiniana responds promptly to Cu2+ at high non-toxic concentration, by mucilage release, alterations in the architecture of the outer cell wall layer and lipid structures, and polyphosphate accumulation within mucilage matrix. The main route of copper detoxification is by Cu2+ coordination to polyphosphates in penta-coordinated geometry. The sequestrated Cu2+ was accessible and could be released by extracellular chelating agents. Finally, the reduction in Cu2+ to Cu1+ appears also to take place. These findings reveal the biochemical basis of the capacity of microalgae to adapt to high external copper concentrations and to serve as both, sinks and pools of environmental copper.
PB  - Portland Press Ltd, London
T2  - Biochemical Journal
T1  - Mechanisms of detoxification of high copper concentrations by the microalga Chlorella sorokiniana
EP  - 3741
IS  - 19
SP  - 3729
VL  - 477
DO  - 10.1042/BCJ20200600
ER  - 
@article{
author = "Vojvodić, Snežana and Stanić, Marina and Zechmann, Bernd and Ducic, Tanja and Žižić, Milan and Dimitrijević, Milena and Danilovic-Luković, Jelena and Milenković, Milica R. and Pittman, Jon K. and Spasojević, Ivan",
year = "2020",
abstract = "Microalgae have evolved mechanisms to respond to changes in copper ion availability, which are very important for normal cellular function, to tolerate metal pollution of aquatic ecosystems, and for modulation of copper bioavailability and toxicity to other organisms. Knowledge and application of these mechanisms will benefit the use of microalgae in wastewater processing and biomass production, and the use of copper compounds in the suppression of harmful algal blooms. Here, using electron microscopy, synchrotron radiation-based Fourier transform infrared spectroscopy, electron paramagnetic resonance spectroscopy, and X-ray absorption fine structure spectroscopy, we show that the microalga Chlorella sorokiniana responds promptly to Cu2+ at high non-toxic concentration, by mucilage release, alterations in the architecture of the outer cell wall layer and lipid structures, and polyphosphate accumulation within mucilage matrix. The main route of copper detoxification is by Cu2+ coordination to polyphosphates in penta-coordinated geometry. The sequestrated Cu2+ was accessible and could be released by extracellular chelating agents. Finally, the reduction in Cu2+ to Cu1+ appears also to take place. These findings reveal the biochemical basis of the capacity of microalgae to adapt to high external copper concentrations and to serve as both, sinks and pools of environmental copper.",
publisher = "Portland Press Ltd, London",
journal = "Biochemical Journal",
title = "Mechanisms of detoxification of high copper concentrations by the microalga Chlorella sorokiniana",
pages = "3741-3729",
number = "19",
volume = "477",
doi = "10.1042/BCJ20200600"
}
Vojvodić, S., Stanić, M., Zechmann, B., Ducic, T., Žižić, M., Dimitrijević, M., Danilovic-Luković, J., Milenković, M. R., Pittman, J. K.,& Spasojević, I.. (2020). Mechanisms of detoxification of high copper concentrations by the microalga Chlorella sorokiniana. in Biochemical Journal
Portland Press Ltd, London., 477(19), 3729-3741.
https://doi.org/10.1042/BCJ20200600
Vojvodić S, Stanić M, Zechmann B, Ducic T, Žižić M, Dimitrijević M, Danilovic-Luković J, Milenković MR, Pittman JK, Spasojević I. Mechanisms of detoxification of high copper concentrations by the microalga Chlorella sorokiniana. in Biochemical Journal. 2020;477(19):3729-3741.
doi:10.1042/BCJ20200600 .
Vojvodić, Snežana, Stanić, Marina, Zechmann, Bernd, Ducic, Tanja, Žižić, Milan, Dimitrijević, Milena, Danilovic-Luković, Jelena, Milenković, Milica R., Pittman, Jon K., Spasojević, Ivan, "Mechanisms of detoxification of high copper concentrations by the microalga Chlorella sorokiniana" in Biochemical Journal, 477, no. 19 (2020):3729-3741,
https://doi.org/10.1042/BCJ20200600 . .

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB