RIMSI - Repository of Institute for Multidisciplinary Research
University of Belgrade - Institute for Multidisciplinary Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Silicon Alleviates Iron Deficiency in Barley by Enhancing Expression of Strategy II Genes and Metal Redistribution

Thumbnail
2019
1281.pdf (2.379Mb)
Authors
Nikolic, Dragana B.
Nesic, Sofija
Bosnic, Dragana
Kostić, Ljiljana
Nikolic, Miroslav
Samardžić, Jelena T.
Article (Published version)
Metadata
Show full item record
Abstract
The beneficial effects of silicon (Si) have been shown on plants using reduction-based strategy for iron (Fe) acquisition. Here we investigated the influence of Si on Fe deficiency stress alleviation in barley (Hordeum vulgare), a crop plant which uses the chelation-based strategy for Fe acquisition. Analyses of chlorophyll content, ROS accumulation, antioxidative status, concentrations of Fe and other micronutrients, along with the expression of Strategy II genes were studied in response to Si supply. Si successfully ameliorated Fe deficiency in barley, diminishing chlorophyll and biomass loss, and improving the activity of antioxidative enzymes, resulting in lowered reactive oxidative species accumulation in the youngest leaves. Alleviation of Fe deficiency stress correlated well with the Si-induced increase of Fe content in the youngest leaves, while it was decreased in root. Moreover, Si nutrition lowered accumulation of other micronutrients in the youngest leaves of Fe deprived pl...ants, by retaining them in the root. On the transcriptional level, Si led to an expedient increase in the expression of genes involved in Strategy II Fe acquisition in roots at the early stage of Fe deficiency stress, while decreasing their expression in a prolonged stress response. Expression of Strategy II genes was remarkably upregulated in the leaves of Si supplied plants. This study broadens the perspective of mechanisms of Si action, providing evidence for ameliorative effects of Si on Strategy II plants, including its influence on accumulation and distribution of microelements, as well as on the expression of the Strategy II genes.

Keywords:
Strategy II Fe acquisition / silicon / microelement accumulation / iron deficiency / gene expression / barley (Hordeum vulgare)
Source:
Frontiers in Plant Science, 2019, 10
Publisher:
  • Frontiers Media Sa, Lausanne
Funding / projects:
  • The Role of Transcription Factors and Small RNAs in Abiotic Stress Response in Plants and Genetic Diversity of Plant Species Important for Agriculture and Biotechnology (RS-173005)
  • Mineral Stress and Plant Adaptations to Marginal Agricultural Soils (RS-173028)

DOI: 10.3389/fpls.2019.00416

ISSN: 1664-462X

PubMed: 31024590

WoS: 000463470300001

Scopus: 2-s2.0-85064227790
[ Google Scholar ]
33
URI
http://rimsi.imsi.bg.ac.rs/handle/123456789/1284
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za multidisciplinarna istraživanja
TY  - JOUR
AU  - Nikolic, Dragana B.
AU  - Nesic, Sofija
AU  - Bosnic, Dragana
AU  - Kostić, Ljiljana
AU  - Nikolic, Miroslav
AU  - Samardžić, Jelena T.
PY  - 2019
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1284
AB  - The beneficial effects of silicon (Si) have been shown on plants using reduction-based strategy for iron (Fe) acquisition. Here we investigated the influence of Si on Fe deficiency stress alleviation in barley (Hordeum vulgare), a crop plant which uses the chelation-based strategy for Fe acquisition. Analyses of chlorophyll content, ROS accumulation, antioxidative status, concentrations of Fe and other micronutrients, along with the expression of Strategy II genes were studied in response to Si supply. Si successfully ameliorated Fe deficiency in barley, diminishing chlorophyll and biomass loss, and improving the activity of antioxidative enzymes, resulting in lowered reactive oxidative species accumulation in the youngest leaves. Alleviation of Fe deficiency stress correlated well with the Si-induced increase of Fe content in the youngest leaves, while it was decreased in root. Moreover, Si nutrition lowered accumulation of other micronutrients in the youngest leaves of Fe deprived plants, by retaining them in the root. On the transcriptional level, Si led to an expedient increase in the expression of genes involved in Strategy II Fe acquisition in roots at the early stage of Fe deficiency stress, while decreasing their expression in a prolonged stress response. Expression of Strategy II genes was remarkably upregulated in the leaves of Si supplied plants. This study broadens the perspective of mechanisms of Si action, providing evidence for ameliorative effects of Si on Strategy II plants, including its influence on accumulation and distribution of microelements, as well as on the expression of the Strategy II genes.
PB  - Frontiers Media Sa, Lausanne
T2  - Frontiers in Plant Science
T1  - Silicon Alleviates Iron Deficiency in Barley by Enhancing Expression of Strategy II Genes and Metal Redistribution
VL  - 10
DO  - 10.3389/fpls.2019.00416
ER  - 
@article{
author = "Nikolic, Dragana B. and Nesic, Sofija and Bosnic, Dragana and Kostić, Ljiljana and Nikolic, Miroslav and Samardžić, Jelena T.",
year = "2019",
abstract = "The beneficial effects of silicon (Si) have been shown on plants using reduction-based strategy for iron (Fe) acquisition. Here we investigated the influence of Si on Fe deficiency stress alleviation in barley (Hordeum vulgare), a crop plant which uses the chelation-based strategy for Fe acquisition. Analyses of chlorophyll content, ROS accumulation, antioxidative status, concentrations of Fe and other micronutrients, along with the expression of Strategy II genes were studied in response to Si supply. Si successfully ameliorated Fe deficiency in barley, diminishing chlorophyll and biomass loss, and improving the activity of antioxidative enzymes, resulting in lowered reactive oxidative species accumulation in the youngest leaves. Alleviation of Fe deficiency stress correlated well with the Si-induced increase of Fe content in the youngest leaves, while it was decreased in root. Moreover, Si nutrition lowered accumulation of other micronutrients in the youngest leaves of Fe deprived plants, by retaining them in the root. On the transcriptional level, Si led to an expedient increase in the expression of genes involved in Strategy II Fe acquisition in roots at the early stage of Fe deficiency stress, while decreasing their expression in a prolonged stress response. Expression of Strategy II genes was remarkably upregulated in the leaves of Si supplied plants. This study broadens the perspective of mechanisms of Si action, providing evidence for ameliorative effects of Si on Strategy II plants, including its influence on accumulation and distribution of microelements, as well as on the expression of the Strategy II genes.",
publisher = "Frontiers Media Sa, Lausanne",
journal = "Frontiers in Plant Science",
title = "Silicon Alleviates Iron Deficiency in Barley by Enhancing Expression of Strategy II Genes and Metal Redistribution",
volume = "10",
doi = "10.3389/fpls.2019.00416"
}
Nikolic, D. B., Nesic, S., Bosnic, D., Kostić, L., Nikolic, M.,& Samardžić, J. T.. (2019). Silicon Alleviates Iron Deficiency in Barley by Enhancing Expression of Strategy II Genes and Metal Redistribution. in Frontiers in Plant Science
Frontiers Media Sa, Lausanne., 10.
https://doi.org/10.3389/fpls.2019.00416
Nikolic DB, Nesic S, Bosnic D, Kostić L, Nikolic M, Samardžić JT. Silicon Alleviates Iron Deficiency in Barley by Enhancing Expression of Strategy II Genes and Metal Redistribution. in Frontiers in Plant Science. 2019;10.
doi:10.3389/fpls.2019.00416 .
Nikolic, Dragana B., Nesic, Sofija, Bosnic, Dragana, Kostić, Ljiljana, Nikolic, Miroslav, Samardžić, Jelena T., "Silicon Alleviates Iron Deficiency in Barley by Enhancing Expression of Strategy II Genes and Metal Redistribution" in Frontiers in Plant Science, 10 (2019),
https://doi.org/10.3389/fpls.2019.00416 . .

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB