RIMSI - Repository of Institute for Multidisciplinary Research
University of Belgrade - Institute for Multidisciplinary Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen-printed thick films for application in humidity sensing

Thumbnail
2019
1258.pdf (2.567Mb)
Authors
Nikolić, Maria Vesna
Vasiljević, Zorka Z
Luković, Miloljub
Pavlović, Vera P.
Krstic, Jugoslav B.
Vujančević, Jelena
Tadić, Nenad B.
Vlahović, Branislav
Pavlović, Vladimir B
Article (Accepted Version)
Metadata
Show full item record
Abstract
Zinc ferrite nanocrystalline powder was obtained by solid state synthesis of starting zinc oxide and hematite nanopowders. Field emission scanning electron microscopy and transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy confirmed the formation of nanocrystalline zinc-ferrite powder with a mixed spinel structure with small amounts of remaining zinc oxide and hematite as impurities. Thick film paste was formed and screen printed on test interdigitated PdAg electrodes on alumina substrate. Formation of a porous nanocrystalline structure was confirmed by scanning electron microscopy and Hg porosimetry. Humidity sensing properties of zinc ferrite thick films were investigated by monitoring the change in impedance in the relative humidity interval 30%-90% in the frequency range 42 Hz-1 MHz at room temperature (25 degrees C) and 50 degrees C. At 42 Hz at both analyzed temperatures the impedance reduced 46 times in the humidity range ...30%-90%. The dominant influence of grain boundaries was confirmed by analysis of complex impedance with an equivalent circuit.

Keywords:
zinc ferrite / thick film / humidity sensor / electrical properties
Source:
International Journal of Applied Ceramic Technology, 2019, 16, 3, 981-993
Publisher:
  • Wiley, Hoboken
Funding / projects:
  • Zero- to Three-Dimensional Nanostructures for Application in Electronics and Renewable Energy Sources: Synthesis, Characterization and Processing (RS-45007)
  • Lithium-ion batteries and fuel cells - research and development (RS-45014)
Note:
  • This is the peered review version of the paper: Nikolić, M. V., Vasiljević, Z., Luković, M., Pavlović, V. P., Krstic, J. B., Vujancević, J., Tadić, N. B., Vlahović, B.,& Pavlović, V. B.. (2019). Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen-printed thick films for application in humidity sensing. in International Journal of Applied Ceramic Technology Wiley, Hoboken., 16(3), 981-993. https://doi.org/10.1111/ijac.13190 conv_556

DOI: 10.1111/ijac.13190

ISSN: 1546-542X

WoS: 000463236200011

Scopus: 2-s2.0-85061495283
[ Google Scholar ]
24
15
URI
http://rimsi.imsi.bg.ac.rs/handle/123456789/1261
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za multidisciplinarna istraživanja
TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Vasiljević, Zorka Z
AU  - Luković, Miloljub
AU  - Pavlović, Vera P.
AU  - Krstic, Jugoslav B.
AU  - Vujančević, Jelena
AU  - Tadić, Nenad B.
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B
PY  - 2019
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1261
AB  - Zinc ferrite nanocrystalline powder was obtained by solid state synthesis of starting zinc oxide and hematite nanopowders. Field emission scanning electron microscopy and transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy confirmed the formation of nanocrystalline zinc-ferrite powder with a mixed spinel structure with small amounts of remaining zinc oxide and hematite as impurities. Thick film paste was formed and screen printed on test interdigitated PdAg electrodes on alumina substrate. Formation of a porous nanocrystalline structure was confirmed by scanning electron microscopy and Hg porosimetry. Humidity sensing properties of zinc ferrite thick films were investigated by monitoring the change in impedance in the relative humidity interval 30%-90% in the frequency range 42 Hz-1 MHz at room temperature (25 degrees C) and 50 degrees C. At 42 Hz at both analyzed temperatures the impedance reduced 46 times in the humidity range 30%-90%. The dominant influence of grain boundaries was confirmed by analysis of complex impedance with an equivalent circuit.
PB  - Wiley, Hoboken
T2  - International Journal of Applied Ceramic Technology
T1  - Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen-printed thick films for application in humidity sensing
EP  - 993
IS  - 3
SP  - 981
VL  - 16
DO  - 10.1111/ijac.13190
ER  - 
@article{
author = "Nikolić, Maria Vesna and Vasiljević, Zorka Z and Luković, Miloljub and Pavlović, Vera P. and Krstic, Jugoslav B. and Vujančević, Jelena and Tadić, Nenad B. and Vlahović, Branislav and Pavlović, Vladimir B",
year = "2019",
abstract = "Zinc ferrite nanocrystalline powder was obtained by solid state synthesis of starting zinc oxide and hematite nanopowders. Field emission scanning electron microscopy and transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy confirmed the formation of nanocrystalline zinc-ferrite powder with a mixed spinel structure with small amounts of remaining zinc oxide and hematite as impurities. Thick film paste was formed and screen printed on test interdigitated PdAg electrodes on alumina substrate. Formation of a porous nanocrystalline structure was confirmed by scanning electron microscopy and Hg porosimetry. Humidity sensing properties of zinc ferrite thick films were investigated by monitoring the change in impedance in the relative humidity interval 30%-90% in the frequency range 42 Hz-1 MHz at room temperature (25 degrees C) and 50 degrees C. At 42 Hz at both analyzed temperatures the impedance reduced 46 times in the humidity range 30%-90%. The dominant influence of grain boundaries was confirmed by analysis of complex impedance with an equivalent circuit.",
publisher = "Wiley, Hoboken",
journal = "International Journal of Applied Ceramic Technology",
title = "Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen-printed thick films for application in humidity sensing",
pages = "993-981",
number = "3",
volume = "16",
doi = "10.1111/ijac.13190"
}
Nikolić, M. V., Vasiljević, Z. Z., Luković, M., Pavlović, V. P., Krstic, J. B., Vujančević, J., Tadić, N. B., Vlahović, B.,& Pavlović, V. B.. (2019). Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen-printed thick films for application in humidity sensing. in International Journal of Applied Ceramic Technology
Wiley, Hoboken., 16(3), 981-993.
https://doi.org/10.1111/ijac.13190
Nikolić MV, Vasiljević ZZ, Luković M, Pavlović VP, Krstic JB, Vujančević J, Tadić NB, Vlahović B, Pavlović VB. Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen-printed thick films for application in humidity sensing. in International Journal of Applied Ceramic Technology. 2019;16(3):981-993.
doi:10.1111/ijac.13190 .
Nikolić, Maria Vesna, Vasiljević, Zorka Z, Luković, Miloljub, Pavlović, Vera P., Krstic, Jugoslav B., Vujančević, Jelena, Tadić, Nenad B., Vlahović, Branislav, Pavlović, Vladimir B, "Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen-printed thick films for application in humidity sensing" in International Journal of Applied Ceramic Technology, 16, no. 3 (2019):981-993,
https://doi.org/10.1111/ijac.13190 . .

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB