RIMSI - Repository of Institute for Multidisciplinary Research
University of Belgrade - Institute for Multidisciplinary Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Insecticidal impact of alumina powders against Acanthoscelides obtectus (Say)

Authorized Users Only
2018
Authors
Lazarević, Jelica
Radojković, Aleksandar
Kostić, Igor
Krnjajić, Slobodan
Mitrović, Jelena
Kostic, Miroslav
Novaković, Tatjana
Branković, Zorica
Branković, Goran
Article (Published version)
Metadata
Show full item record
Abstract
For long-term protection of stored products there is a growing demand to replace chemical insecticides due to their effects on human health and environmental safety. Particulate materials, such as inert dusts and various submicron and nanomaterials have been extensively tested as viable alternatives. This is the first study on the insecticidal impact of alumina powder (alpha-Al2O3) on the bruchid pest, Acanthoscelides obtectus (Say) (Coleoptera: Chrysomelidae: Bruchinae). By altering the fuel to oxidant molar ratio (F/O: 0.5, 0.8, 1.2) in an autocombustion reaction we synthesized alumina powders with specific surface area and particle size varying from the nano- to micron scale. It was found that particle morphology influenced survival and progeny number of A. obtectus. The order of powders from low to high efficacy in reducing beetle performance (F/O-0.8 lt F/O-0.5 lt F/O-1.2) correlated well with increase in surface area, pore volume and diameter, and decrease in particle size. S...urvival was also affected by time of exposure, the applied dose and sex. The estimated median lethal concentration of the most efficient powder F/O-1.2 was significantly lower in males (LC50 = 330.4 ppm) than in females (LC50 = 409.6 ppm). Our results suggest that alumina powder can be considered for seed protection against A. obtectus, particularly during long-term storage, as it is cost effective, exerts limited toxicity to humans and demands no repetitive use like conventional pesticides.

Keywords:
Stored seeds protection / Sexual dimorphism / Insecticide / alpha-Alumina / Acanthoscelides obtectus
Source:
Journal of Stored Products Research, 2018, 77, 45-54
Publisher:
  • Pergamon-Elsevier Science Ltd, Oxford
Funding / projects:
  • Zero- to Three-Dimensional Nanostructures for Application in Electronics and Renewable Energy Sources: Synthesis, Characterization and Processing (RS-45007)
  • Modulation of antioxidative metabolism in plants for improvement of plant abiotic stress tolerance and identification of new biomarkers for application in remediation and monitoring of degraded biotopes (RS-43010)
  • Agrobiodiversity and land-use change in Serbia: an integrated biodiversity assessment of key functional groups of arthropods and plant pathogens (RS-43001)

DOI: 10.1016/j.jspr.2018.02.006

ISSN: 0022-474X

WoS: 000435062000007

Scopus: 2-s2.0-85045919544
[ Google Scholar ]
8
5
URI
http://rimsi.imsi.bg.ac.rs/handle/123456789/1170
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za multidisciplinarna istraživanja
TY  - JOUR
AU  - Lazarević, Jelica
AU  - Radojković, Aleksandar
AU  - Kostić, Igor
AU  - Krnjajić, Slobodan
AU  - Mitrović, Jelena
AU  - Kostic, Miroslav
AU  - Novaković, Tatjana
AU  - Branković, Zorica
AU  - Branković, Goran
PY  - 2018
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1170
AB  - For long-term protection of stored products there is a growing demand to replace chemical insecticides due to their effects on human health and environmental safety. Particulate materials, such as inert dusts and various submicron and nanomaterials have been extensively tested as viable alternatives. This is the first study on the insecticidal impact of alumina powder (alpha-Al2O3) on the bruchid pest, Acanthoscelides obtectus (Say) (Coleoptera: Chrysomelidae: Bruchinae). By altering the fuel to oxidant molar ratio (F/O: 0.5, 0.8, 1.2) in an autocombustion reaction we synthesized alumina powders with specific surface area and particle size varying from the nano- to micron scale. It was found that particle morphology influenced survival and progeny number of A. obtectus. The order of powders from low to high efficacy in reducing beetle performance (F/O-0.8  lt  F/O-0.5  lt  F/O-1.2) correlated well with increase in surface area, pore volume and diameter, and decrease in particle size. Survival was also affected by time of exposure, the applied dose and sex. The estimated median lethal concentration of the most efficient powder F/O-1.2 was significantly lower in males (LC50 = 330.4 ppm) than in females (LC50 = 409.6 ppm). Our results suggest that alumina powder can be considered for seed protection against A. obtectus, particularly during long-term storage, as it is cost effective, exerts limited toxicity to humans and demands no repetitive use like conventional pesticides.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Journal of Stored Products Research
T1  - Insecticidal impact of alumina powders against Acanthoscelides obtectus (Say)
EP  - 54
SP  - 45
VL  - 77
DO  - 10.1016/j.jspr.2018.02.006
ER  - 
@article{
author = "Lazarević, Jelica and Radojković, Aleksandar and Kostić, Igor and Krnjajić, Slobodan and Mitrović, Jelena and Kostic, Miroslav and Novaković, Tatjana and Branković, Zorica and Branković, Goran",
year = "2018",
abstract = "For long-term protection of stored products there is a growing demand to replace chemical insecticides due to their effects on human health and environmental safety. Particulate materials, such as inert dusts and various submicron and nanomaterials have been extensively tested as viable alternatives. This is the first study on the insecticidal impact of alumina powder (alpha-Al2O3) on the bruchid pest, Acanthoscelides obtectus (Say) (Coleoptera: Chrysomelidae: Bruchinae). By altering the fuel to oxidant molar ratio (F/O: 0.5, 0.8, 1.2) in an autocombustion reaction we synthesized alumina powders with specific surface area and particle size varying from the nano- to micron scale. It was found that particle morphology influenced survival and progeny number of A. obtectus. The order of powders from low to high efficacy in reducing beetle performance (F/O-0.8  lt  F/O-0.5  lt  F/O-1.2) correlated well with increase in surface area, pore volume and diameter, and decrease in particle size. Survival was also affected by time of exposure, the applied dose and sex. The estimated median lethal concentration of the most efficient powder F/O-1.2 was significantly lower in males (LC50 = 330.4 ppm) than in females (LC50 = 409.6 ppm). Our results suggest that alumina powder can be considered for seed protection against A. obtectus, particularly during long-term storage, as it is cost effective, exerts limited toxicity to humans and demands no repetitive use like conventional pesticides.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Journal of Stored Products Research",
title = "Insecticidal impact of alumina powders against Acanthoscelides obtectus (Say)",
pages = "54-45",
volume = "77",
doi = "10.1016/j.jspr.2018.02.006"
}
Lazarević, J., Radojković, A., Kostić, I., Krnjajić, S., Mitrović, J., Kostic, M., Novaković, T., Branković, Z.,& Branković, G.. (2018). Insecticidal impact of alumina powders against Acanthoscelides obtectus (Say). in Journal of Stored Products Research
Pergamon-Elsevier Science Ltd, Oxford., 77, 45-54.
https://doi.org/10.1016/j.jspr.2018.02.006
Lazarević J, Radojković A, Kostić I, Krnjajić S, Mitrović J, Kostic M, Novaković T, Branković Z, Branković G. Insecticidal impact of alumina powders against Acanthoscelides obtectus (Say). in Journal of Stored Products Research. 2018;77:45-54.
doi:10.1016/j.jspr.2018.02.006 .
Lazarević, Jelica, Radojković, Aleksandar, Kostić, Igor, Krnjajić, Slobodan, Mitrović, Jelena, Kostic, Miroslav, Novaković, Tatjana, Branković, Zorica, Branković, Goran, "Insecticidal impact of alumina powders against Acanthoscelides obtectus (Say)" in Journal of Stored Products Research, 77 (2018):45-54,
https://doi.org/10.1016/j.jspr.2018.02.006 . .

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB