RIMSI - Repository of Institute for Multidisciplinary Research
University of Belgrade - Institute for Multidisciplinary Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Role of SnO2 on Electrocatalytic Activity of PtSn Catalysts

Authorized Users Only
2018
Authors
Tripković, D.
Stevanović, Sanja I.
Gavrilović, A.
Rogan, Jelena
Lačnjevac, Uroš
Kravić, T.
Jovanović, V. M.
Article (Published version)
Metadata
Show full item record
Abstract
In our previous paper, we described in detail studies of Sn influence on electrocatalytic activity of PtSn catalyst for CO and formic acid oxidation (StevanoviAc et al., J. Phys. Chem. C, 118 (2014) 278-289). The catalyst was composed of a Pt phase, Pt3Sn alloy and very small SnO2 particles. Different electrochemical treatment enabled studies of PtSn/C having Sn both in surface and subsurface layers and skeleton structure of this catalyst with Sn only in subsurface layers. The results obtained revealed the promotional effect of surface Sn whether alloyed or as oxide above all in preventing accumulation of CO and blocking the surface Pt atoms. As a consequence, in formic acid oxidation, the currents are not entering the plateau but increasing constantly until reaching a maximum. It was concluded that at lower potentials the effect of Sn on formic acid oxidation was predominantly electronic but with increasing the potential bi-functional mechanism prevailed due to the leading role of SnO...2. This role of SnO2 is restated in the present study. Therefore, CO and formic acid oxidation were examined at PtSnO2/C catalyst. The catalyst was synthesised by the same microwave-assisted polyol procedure. According to XRD analysis, the catalyst is composed of a Pt phase and SnO2 phase. The reactions were examined on PtSnO2/C catalyst treated on the same way as PtSn/C. Comparing the results obtained, the role of SnO2 is confirmed and at the same time the significance of alloyed Sn and its electronic effect is revealed.

Keywords:
PtSnO2/C / PtSn/C / Formic acid oxidation / CO oxidation
Source:
Electrocatalysis, 2018, 9, 1, 76-85
Publisher:
  • Springer, New York
Funding / projects:
  • New approach in designing materials for energy conversion and energy storage systems (RS-172060)

DOI: 10.1007/s12678-017-0424-4

ISSN: 1868-2529

WoS: 000418815500010

Scopus: 2-s2.0-85039426722
[ Google Scholar ]
10
8
URI
http://rimsi.imsi.bg.ac.rs/handle/123456789/1118
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za multidisciplinarna istraživanja
TY  - JOUR
AU  - Tripković, D.
AU  - Stevanović, Sanja I.
AU  - Gavrilović, A.
AU  - Rogan, Jelena
AU  - Lačnjevac, Uroš
AU  - Kravić, T.
AU  - Jovanović, V. M.
PY  - 2018
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1118
AB  - In our previous paper, we described in detail studies of Sn influence on electrocatalytic activity of PtSn catalyst for CO and formic acid oxidation (StevanoviAc et al., J. Phys. Chem. C, 118 (2014) 278-289). The catalyst was composed of a Pt phase, Pt3Sn alloy and very small SnO2 particles. Different electrochemical treatment enabled studies of PtSn/C having Sn both in surface and subsurface layers and skeleton structure of this catalyst with Sn only in subsurface layers. The results obtained revealed the promotional effect of surface Sn whether alloyed or as oxide above all in preventing accumulation of CO and blocking the surface Pt atoms. As a consequence, in formic acid oxidation, the currents are not entering the plateau but increasing constantly until reaching a maximum. It was concluded that at lower potentials the effect of Sn on formic acid oxidation was predominantly electronic but with increasing the potential bi-functional mechanism prevailed due to the leading role of SnO2. This role of SnO2 is restated in the present study. Therefore, CO and formic acid oxidation were examined at PtSnO2/C catalyst. The catalyst was synthesised by the same microwave-assisted polyol procedure. According to XRD analysis, the catalyst is composed of a Pt phase and SnO2 phase. The reactions were examined on PtSnO2/C catalyst treated on the same way as PtSn/C. Comparing the results obtained, the role of SnO2 is confirmed and at the same time the significance of alloyed Sn and its electronic effect is revealed.
PB  - Springer, New York
T2  - Electrocatalysis
T1  - The Role of SnO2 on Electrocatalytic Activity of PtSn Catalysts
EP  - 85
IS  - 1
SP  - 76
VL  - 9
DO  - 10.1007/s12678-017-0424-4
ER  - 
@article{
author = "Tripković, D. and Stevanović, Sanja I. and Gavrilović, A. and Rogan, Jelena and Lačnjevac, Uroš and Kravić, T. and Jovanović, V. M.",
year = "2018",
abstract = "In our previous paper, we described in detail studies of Sn influence on electrocatalytic activity of PtSn catalyst for CO and formic acid oxidation (StevanoviAc et al., J. Phys. Chem. C, 118 (2014) 278-289). The catalyst was composed of a Pt phase, Pt3Sn alloy and very small SnO2 particles. Different electrochemical treatment enabled studies of PtSn/C having Sn both in surface and subsurface layers and skeleton structure of this catalyst with Sn only in subsurface layers. The results obtained revealed the promotional effect of surface Sn whether alloyed or as oxide above all in preventing accumulation of CO and blocking the surface Pt atoms. As a consequence, in formic acid oxidation, the currents are not entering the plateau but increasing constantly until reaching a maximum. It was concluded that at lower potentials the effect of Sn on formic acid oxidation was predominantly electronic but with increasing the potential bi-functional mechanism prevailed due to the leading role of SnO2. This role of SnO2 is restated in the present study. Therefore, CO and formic acid oxidation were examined at PtSnO2/C catalyst. The catalyst was synthesised by the same microwave-assisted polyol procedure. According to XRD analysis, the catalyst is composed of a Pt phase and SnO2 phase. The reactions were examined on PtSnO2/C catalyst treated on the same way as PtSn/C. Comparing the results obtained, the role of SnO2 is confirmed and at the same time the significance of alloyed Sn and its electronic effect is revealed.",
publisher = "Springer, New York",
journal = "Electrocatalysis",
title = "The Role of SnO2 on Electrocatalytic Activity of PtSn Catalysts",
pages = "85-76",
number = "1",
volume = "9",
doi = "10.1007/s12678-017-0424-4"
}
Tripković, D., Stevanović, S. I., Gavrilović, A., Rogan, J., Lačnjevac, U., Kravić, T.,& Jovanović, V. M.. (2018). The Role of SnO2 on Electrocatalytic Activity of PtSn Catalysts. in Electrocatalysis
Springer, New York., 9(1), 76-85.
https://doi.org/10.1007/s12678-017-0424-4
Tripković D, Stevanović SI, Gavrilović A, Rogan J, Lačnjevac U, Kravić T, Jovanović VM. The Role of SnO2 on Electrocatalytic Activity of PtSn Catalysts. in Electrocatalysis. 2018;9(1):76-85.
doi:10.1007/s12678-017-0424-4 .
Tripković, D., Stevanović, Sanja I., Gavrilović, A., Rogan, Jelena, Lačnjevac, Uroš, Kravić, T., Jovanović, V. M., "The Role of SnO2 on Electrocatalytic Activity of PtSn Catalysts" in Electrocatalysis, 9, no. 1 (2018):76-85,
https://doi.org/10.1007/s12678-017-0424-4 . .

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB