RIMSI - Repository of Institute for Multidisciplinary Research
University of Belgrade - Institute for Multidisciplinary Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Silicon mediates sodium transport and partitioning in maize under moderate salt stress

Authorized Users Only
2018
Authors
Bosnić, Predrag
Bosnic, Dragana
Jasnic, Jovana
Nikolic, Miroslav
Article (Published version)
Metadata
Show full item record
Abstract
Silicon (Si) is known to alleviate salt stress in various crops; however, the influence of Si on sodium (Na) transport and partitioning at the tissue, cell and organelle levels is poorly understood. Maize (Zea mays L.) hybrid sensitive to salt stress was exposed to moderate salt stress (40 mM NaCl; simulating conditions in salinized agricultural soils) without or with supply of 1.5 mM Si(OH)(4). We investigated the expression of SOS genes encoding Na+ efflux transporter in various root tissues of maize, paralleled by measurements of tissue Na concentration. In addition, subcellular localization of Na (using Na fluorescent dye) within the leaf mesophyll cells was also performed. Silicon supplied plants accumulate less Na in both root apex and cortex, but allocate more Na+ to the leaves via the xylem. This was accompanied by increased expression of ZrnSOS1 and ZmSOS2 in the root apex and cortex facilitating Na+ exclusion, and in the root stele for enhanced Na+ loading into the xylem. Als...o, Si down-regulated the expression of ZmHKT1 in the root stele, which further decreased Na+ unloading from the xylem. Consequently, Si increased accumulation of Na in leaves, but also enhances sequestration of Na+ into the vacuoles thereby decreasing Na+ accumulation in the chloroplasts. In response to moderate salt stress in maize, Si shifts the typical glycophyte behavior of this species towards that of halophytes.

Keywords:
Vacuole / SOS1 genes / Sodium / Silicon / Salinity / Maize (Zea mays L.)
Source:
Environmental and Experimental Botany, 2018, 155, 681-687
Publisher:
  • Pergamon-Elsevier Science Ltd, Oxford
Funding / projects:
  • Mineral Stress and Plant Adaptations to Marginal Agricultural Soils (RS-173028)
  • The Role of Transcription Factors and Small RNAs in Abiotic Stress Response in Plants and Genetic Diversity of Plant Species Important for Agriculture and Biotechnology (RS-173005)
  • Complex diseases as a model system for phenotype modulation- structural and functional analysis of molecular biomarkers (RS-173008)

DOI: 10.1016/j.envexpbot.2018.08.018

ISSN: 0098-8472

WoS: 000446289500064

Scopus: 2-s2.0-85052116558
[ Google Scholar ]
42
3
URI
http://rimsi.imsi.bg.ac.rs/handle/123456789/1106
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za multidisciplinarna istraživanja
TY  - JOUR
AU  - Bosnić, Predrag
AU  - Bosnic, Dragana
AU  - Jasnic, Jovana
AU  - Nikolic, Miroslav
PY  - 2018
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1106
AB  - Silicon (Si) is known to alleviate salt stress in various crops; however, the influence of Si on sodium (Na) transport and partitioning at the tissue, cell and organelle levels is poorly understood. Maize (Zea mays L.) hybrid sensitive to salt stress was exposed to moderate salt stress (40 mM NaCl; simulating conditions in salinized agricultural soils) without or with supply of 1.5 mM Si(OH)(4). We investigated the expression of SOS genes encoding Na+ efflux transporter in various root tissues of maize, paralleled by measurements of tissue Na concentration. In addition, subcellular localization of Na (using Na fluorescent dye) within the leaf mesophyll cells was also performed. Silicon supplied plants accumulate less Na in both root apex and cortex, but allocate more Na+ to the leaves via the xylem. This was accompanied by increased expression of ZrnSOS1 and ZmSOS2 in the root apex and cortex facilitating Na+ exclusion, and in the root stele for enhanced Na+ loading into the xylem. Also, Si down-regulated the expression of ZmHKT1 in the root stele, which further decreased Na+ unloading from the xylem. Consequently, Si increased accumulation of Na in leaves, but also enhances sequestration of Na+ into the vacuoles thereby decreasing Na+ accumulation in the chloroplasts. In response to moderate salt stress in maize, Si shifts the typical glycophyte behavior of this species towards that of halophytes.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Environmental and Experimental Botany
T1  - Silicon mediates sodium transport and partitioning in maize under moderate salt stress
EP  - 687
SP  - 681
VL  - 155
DO  - 10.1016/j.envexpbot.2018.08.018
ER  - 
@article{
author = "Bosnić, Predrag and Bosnic, Dragana and Jasnic, Jovana and Nikolic, Miroslav",
year = "2018",
abstract = "Silicon (Si) is known to alleviate salt stress in various crops; however, the influence of Si on sodium (Na) transport and partitioning at the tissue, cell and organelle levels is poorly understood. Maize (Zea mays L.) hybrid sensitive to salt stress was exposed to moderate salt stress (40 mM NaCl; simulating conditions in salinized agricultural soils) without or with supply of 1.5 mM Si(OH)(4). We investigated the expression of SOS genes encoding Na+ efflux transporter in various root tissues of maize, paralleled by measurements of tissue Na concentration. In addition, subcellular localization of Na (using Na fluorescent dye) within the leaf mesophyll cells was also performed. Silicon supplied plants accumulate less Na in both root apex and cortex, but allocate more Na+ to the leaves via the xylem. This was accompanied by increased expression of ZrnSOS1 and ZmSOS2 in the root apex and cortex facilitating Na+ exclusion, and in the root stele for enhanced Na+ loading into the xylem. Also, Si down-regulated the expression of ZmHKT1 in the root stele, which further decreased Na+ unloading from the xylem. Consequently, Si increased accumulation of Na in leaves, but also enhances sequestration of Na+ into the vacuoles thereby decreasing Na+ accumulation in the chloroplasts. In response to moderate salt stress in maize, Si shifts the typical glycophyte behavior of this species towards that of halophytes.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Environmental and Experimental Botany",
title = "Silicon mediates sodium transport and partitioning in maize under moderate salt stress",
pages = "687-681",
volume = "155",
doi = "10.1016/j.envexpbot.2018.08.018"
}
Bosnić, P., Bosnic, D., Jasnic, J.,& Nikolic, M.. (2018). Silicon mediates sodium transport and partitioning in maize under moderate salt stress. in Environmental and Experimental Botany
Pergamon-Elsevier Science Ltd, Oxford., 155, 681-687.
https://doi.org/10.1016/j.envexpbot.2018.08.018
Bosnić P, Bosnic D, Jasnic J, Nikolic M. Silicon mediates sodium transport and partitioning in maize under moderate salt stress. in Environmental and Experimental Botany. 2018;155:681-687.
doi:10.1016/j.envexpbot.2018.08.018 .
Bosnić, Predrag, Bosnic, Dragana, Jasnic, Jovana, Nikolic, Miroslav, "Silicon mediates sodium transport and partitioning in maize under moderate salt stress" in Environmental and Experimental Botany, 155 (2018):681-687,
https://doi.org/10.1016/j.envexpbot.2018.08.018 . .

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB