RIMSI - Repository of Institute for Multidisciplinary Research
University of Belgrade - Institute for Multidisciplinary Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Structural and electronic properties of screen-printed Fe2O3/TiO2 thick films and their photoelectrochemical behavior

Authorized Users Only
2017
Authors
Aleksić, Obrad
Vasiljević, Zorka Z
Vujković, Milica
Nikolic, Marko
Labus, Nebojša J.
Luković, Miloljub
Nikolić, Maria Vesna
Article (Published version)
Metadata
Show full item record
Abstract
Nanostructured Fe2TiO5 thick films were deposited on fluorine-doped tin oxide glass substrate using screen printing technology. Starting hematite and anatase nanopowders were mixed in molar ratios 1:1 and 1:1.5 and calcined in air at 900A degrees C for 2 h to form pseudobrookite, Fe2TiO5. Functional powders and sintered thick films were analyzed by X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy and transmission electron microscopy. UV-Vis analysis enabled determination of the band gap. Separation and transfer efficiency of photogenerated charge carriers was confirmed by the photoluminescence and electrochemical impedance spectra. Even though a slightly high onset oxygen evolution potential of photoexcited film electrode samples in NaOH was obtained, photocurrent densities were high, especially in the presence of H2O2 (similar to 12 mA cm(-2) at 1.7 V RHE). This work shows promise for practical application due to favorable band positions of pseudobrookit...e and low-cost screen printing technology.

Source:
Journal of Materials Science, 2017, 52, 10, 5938-5953
Publisher:
  • Springer, New York
Funding / projects:
  • Zero- to Three-Dimensional Nanostructures for Application in Electronics and Renewable Energy Sources: Synthesis, Characterization and Processing (RS-45007)
  • Lithium-ion batteries and fuel cells - research and development (RS-45014)

DOI: 10.1007/s10853-017-0830-2

ISSN: 0022-2461

WoS: 000395206400044

Scopus: 2-s2.0-85011292075
[ Google Scholar ]
5
5
URI
http://rimsi.imsi.bg.ac.rs/handle/123456789/1098
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za multidisciplinarna istraživanja
TY  - JOUR
AU  - Aleksić, Obrad
AU  - Vasiljević, Zorka Z
AU  - Vujković, Milica
AU  - Nikolic, Marko
AU  - Labus, Nebojša J.
AU  - Luković, Miloljub
AU  - Nikolić, Maria Vesna
PY  - 2017
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1098
AB  - Nanostructured Fe2TiO5 thick films were deposited on fluorine-doped tin oxide glass substrate using screen printing technology. Starting hematite and anatase nanopowders were mixed in molar ratios 1:1 and 1:1.5 and calcined in air at 900A degrees C for 2 h to form pseudobrookite, Fe2TiO5. Functional powders and sintered thick films were analyzed by X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy and transmission electron microscopy. UV-Vis analysis enabled determination of the band gap. Separation and transfer efficiency of photogenerated charge carriers was confirmed by the photoluminescence and electrochemical impedance spectra. Even though a slightly high onset oxygen evolution potential of photoexcited film electrode samples in NaOH was obtained, photocurrent densities were high, especially in the presence of H2O2 (similar to 12 mA cm(-2) at 1.7 V RHE). This work shows promise for practical application due to favorable band positions of pseudobrookite and low-cost screen printing technology.
PB  - Springer, New York
T2  - Journal of Materials Science
T1  - Structural and electronic properties of screen-printed Fe2O3/TiO2 thick films and their photoelectrochemical behavior
EP  - 5953
IS  - 10
SP  - 5938
VL  - 52
DO  - 10.1007/s10853-017-0830-2
ER  - 
@article{
author = "Aleksić, Obrad and Vasiljević, Zorka Z and Vujković, Milica and Nikolic, Marko and Labus, Nebojša J. and Luković, Miloljub and Nikolić, Maria Vesna",
year = "2017",
abstract = "Nanostructured Fe2TiO5 thick films were deposited on fluorine-doped tin oxide glass substrate using screen printing technology. Starting hematite and anatase nanopowders were mixed in molar ratios 1:1 and 1:1.5 and calcined in air at 900A degrees C for 2 h to form pseudobrookite, Fe2TiO5. Functional powders and sintered thick films were analyzed by X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy and transmission electron microscopy. UV-Vis analysis enabled determination of the band gap. Separation and transfer efficiency of photogenerated charge carriers was confirmed by the photoluminescence and electrochemical impedance spectra. Even though a slightly high onset oxygen evolution potential of photoexcited film electrode samples in NaOH was obtained, photocurrent densities were high, especially in the presence of H2O2 (similar to 12 mA cm(-2) at 1.7 V RHE). This work shows promise for practical application due to favorable band positions of pseudobrookite and low-cost screen printing technology.",
publisher = "Springer, New York",
journal = "Journal of Materials Science",
title = "Structural and electronic properties of screen-printed Fe2O3/TiO2 thick films and their photoelectrochemical behavior",
pages = "5953-5938",
number = "10",
volume = "52",
doi = "10.1007/s10853-017-0830-2"
}
Aleksić, O., Vasiljević, Z. Z., Vujković, M., Nikolic, M., Labus, N. J., Luković, M.,& Nikolić, M. V.. (2017). Structural and electronic properties of screen-printed Fe2O3/TiO2 thick films and their photoelectrochemical behavior. in Journal of Materials Science
Springer, New York., 52(10), 5938-5953.
https://doi.org/10.1007/s10853-017-0830-2
Aleksić O, Vasiljević ZZ, Vujković M, Nikolic M, Labus NJ, Luković M, Nikolić MV. Structural and electronic properties of screen-printed Fe2O3/TiO2 thick films and their photoelectrochemical behavior. in Journal of Materials Science. 2017;52(10):5938-5953.
doi:10.1007/s10853-017-0830-2 .
Aleksić, Obrad, Vasiljević, Zorka Z, Vujković, Milica, Nikolic, Marko, Labus, Nebojša J., Luković, Miloljub, Nikolić, Maria Vesna, "Structural and electronic properties of screen-printed Fe2O3/TiO2 thick films and their photoelectrochemical behavior" in Journal of Materials Science, 52, no. 10 (2017):5938-5953,
https://doi.org/10.1007/s10853-017-0830-2 . .

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB