Приказ основних података о документу

dc.creatorStanić, Marina
dc.creatorKrizak, Strahinja
dc.creatorJovanović, Mirna
dc.creatorPajic, Tanja
dc.creatorCiric, Ana
dc.creatorŽižić, Milan
dc.creatorZakrzewska, Joanna
dc.creatorCvetić-Antić, Tijana
dc.creatorTodorović, Nataša
dc.creatorZivić, Miroslav
dc.date.accessioned2022-04-05T15:10:30Z
dc.date.available2022-04-05T15:10:30Z
dc.date.issued2017
dc.identifier.issn1350-0872
dc.identifier.urihttp://rimsi.imsi.bg.ac.rs/handle/123456789/1082
dc.description.abstractIncreasing resistance of fungal strains to known fungicides has prompted identification of new candidates for fungicides among substances previously used for other purposes. We have tested the effects of known anion channel inhibitors anthracene-9-carboxylic acid (A9C) and niflumic acid (NFA) on growth, energy metabolism and anionic current of mycelium of fungus Phycomyces blakesleeanus. Both inhibitors significantly decreased growth and respiration of mycelium, but complete inhibition was only achieved by 100 and 500 mu M NFA for growth and respiration, respectively. A9C had no effect on respiration of human NCI-H460 cell line and very little effect on cucumber root sprout clippings, which nominates this inhibitor for further investigation as a potential new fungicide. Effects of A9C and NFA on respiration of isolated mitochondria of P. blakesleeanus were significantly smaller, which indicates that their inhibitory effect on respiration of mycelium is indirect. NMR spectroscopy showed that both A9C and NFA decrease the levels of ATP and polyphosphates in the mycelium of P. blakesleeanus, but only A9C caused intracellular acidification. Outwardly rectifying, fast inactivating instantaneous anionic current (ORIC) was also reduced to 33 +/- 5 and 21 +/- 3% of its pre-treatment size by A9C and NFA, respectively, but only in the absence of ATP. It can be assumed from our results that the regulation of ORIC is tightly linked to cellular energy metabolism in P. blakesleeanus, and the decrease in ATP and polyphosphate levels could be a direct cause of growth inhibition.en
dc.publisherMicrobiology Soc, London
dc.relationinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/173040/RS//
dc.rightsrestrictedAccess
dc.sourceMicrobiology-Sgm
dc.subjectgrowth inhibitionen
dc.subjectfungicideen
dc.subjectcellular respirationen
dc.subjectcellular energy metabolismen
dc.subjectATPen
dc.titleGrowth inhibition of fungus Phycomyces blakesleeanus by anion channel inhibitors anthracene-9-carboxylic and niflumic acid attained through decrease in cellular respiration and energy metabolitesen
dc.typearticle
dc.rights.licenseARR
dc.citation.epage372
dc.citation.issue3
dc.citation.other163(3): 364-372
dc.citation.rankM23
dc.citation.spage364
dc.citation.volume163
dc.identifier.doi10.1099/mic.0.000429
dc.identifier.pmid28100310
dc.identifier.scopus2-s2.0-85017022734
dc.identifier.wos000400276500009
dc.type.versionpublishedVersion


Документи

Thumbnail

Овај документ се појављује у следећим колекцијама

Приказ основних података о документу