RIMSI - Repository of Institute for Multidisciplinary Research
University of Belgrade - Institute for Multidisciplinary Research
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   RIMSI
  • Institut za multidisciplinarna istraživanja
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Thermo-responsive microgels based on encapsulated carbon quantum dots

Authorized Users Only
2017
Authors
Campos, Bruno B.
Mutavdžić, Dragosav
Stanković, Mira
Radotić, Ksenija
Lazaro-Martinez, Juan M.
Esteves da Silva, Joaquim C.G.
Contreras-Caceres, Rafael
Soledad, Pino-Gonzalez, M.
Rodriguez-Castellon, Enrique
Algarra, Manuel
Article (Published version)
Metadata
Show full item record
Abstract
In this work carbon quantum dot (CQD) nanoparticles are synthesized from D-lactose using a hydrothermal method and then they are coated with polyethylene glycol (CQDs"PEG). These particles exhibit a monodisperse spherical morphology with an average particle size of similar to 4 nm. Nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy showed the presence of the hydroxyl groups from the ethylene glycol molecules grafted onto the CQDs' surfaces, which confirms that PEG was covalently attached to the nanoparticles' surfaces. Fluorescence analysis demonstrates a shift in the emission at 495 nm after PEG coating. Modified carbon dots were introduced into thermo-responsive pNIPAM microgels. The resultant pNIPAM-CQDs"PEG hybrid system exhibits interesting fluorescence properties. Transmission electron microscopy (TEM), fluorescence microscopy, and energy-dispersive X-ray (EDX) spectroscopy confirm the incorporation of CQD particles into the microgels. Finally, dy...namic light scattering (DLS) analysis confirms that further hybrid microgels based on pNIPAM are thermo-responsive, with a transition temperature similar to that of a system with an ionic component.

Keywords:
carbon quantum dots nanoparticles / Nuclear magnetic resonance / Fourier transform infrared spectroscopy / Transmission electron microscopy / fluorescence microscopy / energy-dispersed X-ray spectroscopy
Source:
New Journal of Chemistry, 2017, 41, 12, 4835-4842
Publisher:
  • Royal Soc Chemistry, Cambridge
Funding / projects:
  • J. Andalucia (Spain) [P12-RNM-1565]
  • MINECO, Spain [CTQ2012-37925-C03-03]
  • Study of structure-function relationships in the plant cell wall and modifications of the wall structure by enzyme engineering (RS-173017)
  • FCT, PortugalPortuguese Foundation for Science and Technology [SFRH/BD/84318/2012]
  • M. Curie COFUND programme "U-Mobility" - Univ. Malaga
  • EU 7th FP Grant [246550]
  • ANPCYTANPCyT [PICT 2012-0151]
  • Univ. Buenos AiresUniversity of Buenos Aires [UBACyT 2013-2016/043BA]
  • CONICETConsejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) [PIP 2014-2016/130]

DOI: 10.1039/c6nj03893j

ISSN: 1144-0546

WoS: 000403340100022

Scopus: 2-s2.0-85021993763
[ Google Scholar ]
17
6
URI
http://rimsi.imsi.bg.ac.rs/handle/123456789/1053
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Institut za multidisciplinarna istraživanja
TY  - JOUR
AU  - Campos, Bruno B.
AU  - Mutavdžić, Dragosav
AU  - Stanković, Mira
AU  - Radotić, Ksenija
AU  - Lazaro-Martinez, Juan M.
AU  - Esteves da Silva, Joaquim C.G.
AU  - Contreras-Caceres, Rafael
AU  - Soledad, Pino-Gonzalez, M.
AU  - Rodriguez-Castellon, Enrique
AU  - Algarra, Manuel
PY  - 2017
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1053
AB  - In this work carbon quantum dot (CQD) nanoparticles are synthesized from D-lactose using a hydrothermal method and then they are coated with polyethylene glycol (CQDs"PEG). These particles exhibit a monodisperse spherical morphology with an average particle size of similar to 4 nm. Nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy showed the presence of the hydroxyl groups from the ethylene glycol molecules grafted onto the CQDs' surfaces, which confirms that PEG was covalently attached to the nanoparticles' surfaces. Fluorescence analysis demonstrates a shift in the emission at 495 nm after PEG coating. Modified carbon dots were introduced into thermo-responsive pNIPAM microgels. The resultant pNIPAM-CQDs"PEG hybrid system exhibits interesting fluorescence properties. Transmission electron microscopy (TEM), fluorescence microscopy, and energy-dispersive X-ray (EDX) spectroscopy confirm the incorporation of CQD particles into the microgels. Finally, dynamic light scattering (DLS) analysis confirms that further hybrid microgels based on pNIPAM are thermo-responsive, with a transition temperature similar to that of a system with an ionic component.
PB  - Royal Soc Chemistry, Cambridge
T2  - New Journal of Chemistry
T1  - Thermo-responsive microgels based on encapsulated carbon quantum dots
EP  - 4842
IS  - 12
SP  - 4835
VL  - 41
DO  - 10.1039/c6nj03893j
ER  - 
@article{
author = "Campos, Bruno B. and Mutavdžić, Dragosav and Stanković, Mira and Radotić, Ksenija and Lazaro-Martinez, Juan M. and Esteves da Silva, Joaquim C.G. and Contreras-Caceres, Rafael and Soledad, Pino-Gonzalez, M. and Rodriguez-Castellon, Enrique and Algarra, Manuel",
year = "2017",
abstract = "In this work carbon quantum dot (CQD) nanoparticles are synthesized from D-lactose using a hydrothermal method and then they are coated with polyethylene glycol (CQDs"PEG). These particles exhibit a monodisperse spherical morphology with an average particle size of similar to 4 nm. Nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy showed the presence of the hydroxyl groups from the ethylene glycol molecules grafted onto the CQDs' surfaces, which confirms that PEG was covalently attached to the nanoparticles' surfaces. Fluorescence analysis demonstrates a shift in the emission at 495 nm after PEG coating. Modified carbon dots were introduced into thermo-responsive pNIPAM microgels. The resultant pNIPAM-CQDs"PEG hybrid system exhibits interesting fluorescence properties. Transmission electron microscopy (TEM), fluorescence microscopy, and energy-dispersive X-ray (EDX) spectroscopy confirm the incorporation of CQD particles into the microgels. Finally, dynamic light scattering (DLS) analysis confirms that further hybrid microgels based on pNIPAM are thermo-responsive, with a transition temperature similar to that of a system with an ionic component.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "New Journal of Chemistry",
title = "Thermo-responsive microgels based on encapsulated carbon quantum dots",
pages = "4842-4835",
number = "12",
volume = "41",
doi = "10.1039/c6nj03893j"
}
Campos, B. B., Mutavdžić, D., Stanković, M., Radotić, K., Lazaro-Martinez, J. M., Esteves da Silva, J. C.G., Contreras-Caceres, R., Soledad, P. M., Rodriguez-Castellon, E.,& Algarra, M.. (2017). Thermo-responsive microgels based on encapsulated carbon quantum dots. in New Journal of Chemistry
Royal Soc Chemistry, Cambridge., 41(12), 4835-4842.
https://doi.org/10.1039/c6nj03893j
Campos BB, Mutavdžić D, Stanković M, Radotić K, Lazaro-Martinez JM, Esteves da Silva JC, Contreras-Caceres R, Soledad PM, Rodriguez-Castellon E, Algarra M. Thermo-responsive microgels based on encapsulated carbon quantum dots. in New Journal of Chemistry. 2017;41(12):4835-4842.
doi:10.1039/c6nj03893j .
Campos, Bruno B., Mutavdžić, Dragosav, Stanković, Mira, Radotić, Ksenija, Lazaro-Martinez, Juan M., Esteves da Silva, Joaquim C.G., Contreras-Caceres, Rafael, Soledad, Pino-Gonzalez, M., Rodriguez-Castellon, Enrique, Algarra, Manuel, "Thermo-responsive microgels based on encapsulated carbon quantum dots" in New Journal of Chemistry, 41, no. 12 (2017):4835-4842,
https://doi.org/10.1039/c6nj03893j . .

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About RIMSI | Send Feedback

OpenAIRERCUB