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Abstract
Complex impedance spectra at room temperature in the frequency range of 8Hz—5MHzwere
measured on freshly cut leaf sections of theAloe vera plant byAC impedance spectroscopy. Theywere
analyzed using a classical ‘brickwork’ equivalent circuit composed of grain and grain boundary
contributions commonly applied to solid-statematerials. The obtained grain resistance/capacitance
was 0.4MΩ/72 pF and grain boundary resistance/ capacitancewas 66.4MΩ/50 nF. The determined
conductivity changed according to the Jonscher power lawwithσDC of 4.02 · 10

–5 (Ωm)−1 and
frequency constant of 0.92 characteristic for hopping as the conductionmechanism. Analysis of
dielectric permittivity and electricmodulus confirmed the non-Debye relaxation behavior. Nyquist
plots for electricmodulus revealed conductivity relaxation in the low frequency attributed to grain
boundaries and impedancemodulus displayed dielectric relaxation in the high frequency region
associatedwith grains. A correlation has been established among the investigated parameters,
morphology, and EIS-derived simulated parameters.

1. Introduction

Aloe vera (Aloe barbadensisMiller) is a succulent perennial plant species, from theAsphodelaceae family andAloe
genus [1]. It grows and thrives in hot and dry climates. Its leaves are thick and fleshy enabling the plant to store
water [2]. Plant survival is dependent on the pulp beneath the leaf which storeswater aswell as nutrients. The
thickwax-like outer layer of the leaf impedes water from evaporation. Succulence is a feature of crassulacean
acidmetabolismplants with a specific pathway of carbon fixation enabling survival and even growth under
conditionswith not a lot of water [3]. Aloe leaves are dark green in color, well-connected at the stem in awhirling
rosette structure [4]. The thick epidermis causes the leaf formation- an outer green protective rind covered by
cuticle encompassing themesophyll. The inner latex layer contains vascular bundles. Themesophyll is
differentiated into chlorenchyma and thinner-walled parenchyma (pulp-fillet) cells [4]. The parenchyma cells
constitute a transparentmucilaginous jelly generallymentioned as Aloe vera gel. Thewater content in raw pulp
is∼98.5%,while it is∼99.5% in the gel [5]. Polysaccharidesmake upmore than 60%of the remaining solid part
[6], while the remaining compounds are glycoproteins, enzymes, water-soluble and fat-soluble vitamins,
minerals, phenolic compounds, such as anthraquinones, and organic acids [7]. Aloe vera leaves contain
minerals, such as Ca,Mg,Na, K, P, Fe, Cu, Zn, andMn [4, 8]. Aloe vera is used traditionally inmedicine, as it has
shownwound and burn healing properties, anti-inflammatory, and immunomodulatory effects [5]. Aloe vera
gel is widely applied in themedicine and pharmaceutical industry [7, 8], food industry as food coating [9] and
textile industry [10]. Aloe vera fibers have been investigated as lignocellulosic fibers for reinforcing biopolymers
such as polylactic acid (PLA) for application in green composites [11].
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Recent research has focused on plants in twoways: the first is design of plant based biohybrid systems and the
second is the growing field of bioelectronics tailored for plant healthmonitoring [12]. Biohybrid systems use
plants as integral parts of a device or functionalize plants with smartmaterials and transform them into
biohybrid devices. Biohybrids have awide range of applications including energy harvesting, self-organized
electronics and plant nanobionics [12–15]. Thus, recent research byAlluri et al [16] has focused on using Aloe
vera gel as an active component of a piezo-electric energy harvester, whileMousa et al [17] usedAloe vera pulp to
design a soft e-skin biohybrid for tactile sensing. Bioimpedance spectroscopy has been used tomeasure and
interpret plant electrical signals andmonitor plant behavior [12, 18].Whenmonitoring plant health the applied
electrode can disturb the natural processes occurring in the plant and on the plant surface. ThusKim et al [19]
applied a vapor-tissue polymer tattoo electrode tomonitor deep tissue damage in living hosta plants, while
Barbosa et al [20] attachedwearable sensors to leaves tomonitor plantwater loss.

Electrical impedance spectroscopy (complex resistance (R+ j X)measured during application of an
alternating current (AC) is amethodwidely applied to characterize solid-statematerials, including ceramics,
solid state electrolytes and polymers [21–24]. Thismethod has been applied to other solidmaterials, including
biological tissues. Electrical conductivity in biological tissues has been linkedwith ion content and ionicmobility
[25]. In plants,measurements using electrical impedance spectroscopy have been done tomonitor plant health
status [25, 26]. The impedance of plant tissuewas found to be dependent onmembrane structures, cellular ionic
content, and viscosity [25]. Focusing onAloe vera, inspired by the versatility and applicability of this succulent
plant, its water retention ability and the significance of both bioelectronic and biohybrid research, we performed
a study of complex impedance changewith frequency (range 8Hz—5MHz) on freshly cut leaf sections of a
healthywell-wateredAloe vera plant, without applying any additional electrode. By applying a classical
‘brickwork’ equivalent circuitmodel [21, 27]we observed it as a solid-statematerial with grains and grain
boundary resistance/capacitance contributing to the change in impedancewith frequency and identified the low
frequency electrode effect. This research is the first step in establishing a correlation between the biological and
electrical properties through circuitmodeling and samplemicrostructure and ascertaining the origin of the
water retention ability in succulents, such as Aloe vera in order to better understand the energy harvesting ability
of succulents as possible renewable sources of energy.

2.Materials andmethods

TheAloe vera (Aloe barbadensisMiller) plant was purchased in a local greenhouse flower shop, as shown in
figure 1. Freshly cut leaf pieces were used formeasurement as shown infigure 1. The sample dimensionswere
11× 11mm (surface) and 8mm (thickness). Samples were placed into a sample holder (made in our laboratory
with copper components and generally used formeasuring electric and dielectric properties of pellet samples in
parallel plate capacitormode) as shown infigure 1. The actual contact copper electrode had a diameter of 3mm.
The sample impedance (R+ jX) and phase angle weremeasured in the sameway as for ceramic pellet samples.
We used aHIOKI LCR 3536 analyzer (Nagano, Japan)with a basic accuracy Z± 0.05% rdg. θ:±0.03°

Figure 1.Aloe vera plant (a), freshly cut leaf samples (b), and leaf sample placed in the sample holder for impedancemeasurement (c)
and (d).
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(representative value,measurable range: 1mΩ to 200MΩ), frequency range 8Hz—5MHz− 5 digits setting
resolution,minimum resolution 10mHz). Themeasurements were conducted at room temperature (25 °C) in
the frequency range 8Hz—5MHz. The applied voltagewas 1V and this valuewas selected as a common value
appliedwhenmeasuring ceramic pellet samples or thickfilms [28]. The current through the sample during such
AC voltage is commonly in the range 2mA—0.2μAdepending on the frequency value andmeasured
impedance. The instrument and sample holder were connectedwith a 4-TERMINALPROBE 9140–10
accessory.Wemeasured 200 points distributed in a logarithmdistribution in themeasured frequency rangewith
1 s between eachmeasurement. Allmeasurements were done in triplicate.

Leaf sections for illustration of the leaf structure were prepared by free-hand sectioning. Samples of the
middle region of the leaf, about 4 mmwide and 10mm long, were cut. Cross and longitudinal sections (about
4× 3mm, thickness about 1mm) of these sampleswere prepared by free-hand sectioningwith a razor blade.
The prepared sections weremoved into a drop of distilledwater placed on amicroscope slide. Tissue paperwas
used to partially absorb excess water. Samples were photographed using a RedmiNote 9Pro cell phonewith a
64MPQuad camerawith a clip-onmacro lens 12.5× lighted by a dual LED light source.

Samples for FTIR analysis were prepared by freeze-drying freshly cut leaf samples for 48 h. Thismethod
enabled the removal of all liquid (water) from the sample, leaving only dry tissue and rind. FTIR spectra of the
outer rind andfluffy inner leaf cell structure were recorded on a Perkin Elmer SpectrumTwo (WalthamMA,
USA) in the range 400–4000 cm−1, resolution 8 cm−1. Allmeasurements were performed in triplicate.

3. Results and discussion

3.1.Opticalmicroscopy images
In opticalmicroscopy images of Aloe vera leaf cross and longitudinal sections (figure 2), we can see the outer
green rind, vascular bundles, and the fillet inner leaf structure. The inner leaf structure is composed of the cell
wall, organelle, and gel (transparentmucilaginous jelly) [29]. The images of leaf cross and longitudinal sections
show the structure of parenchyma cells showing cell walls with the gel inside. A highermagnitude image of the
filletmicrostructure has been previously obtained using scanning electronmicroscopy and has shown that the
parenchyma cell size is 300–400μm [6]. Choi et al [29] compared optical and scanning electronmicroscopywith
cryo-scanning electronmicroscopy of Aloe vera leaf sections. Cryo-scanning electronmicroscopy enabled
observation of the ‘near life-like’ state of the leaf gel asmoisturewas retained if the preparation process included
rapid sublimation. Beehive-like poreswere noted, and the cell structure was preserved showing cells surrounded
by cell walls, visible contact surfaces among neighboring cells, and the intercellular space, confirming the cell size
to be about 300–400μm [29].

Figure 2.Opticalmicroscopy images of the cross and longitudinal leaf sections of freshly cut Aloe vera leaf.
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3.2. FTIR spectrumanalysis
FTIR spectroscopy has been applied to identify the functional groups present in theAloe vera leaf [2].We
measured FTIR spectra in different parts of the freeze-dried leaf sample and theywere very similar showing the
same bandswith slightly different intensities as noted before in literature for the spectrumof dryAloe vera gel
measured byDehgan et al [30] or aqueous extracts of different Aloe vera samples collected in different regions in
India [2]. An example taken of a freeze-dried inner part is given infigure 3. Analysis of the recorded spectra show
that the region 3500–3200 cm−1 with awide band centered at≈3300 cm−1 relates toO–Hstretching of phenols
and carboxylic acids [2]. According to Torres-Giner et al [31], the presence of this band in driedAloe vera
samples can be associatedwith phenolic groups of anthraquinones, such as aloin and emodin. The smaller, but
sharper band centered at≈2919 cm−1 with a small shoulder peak at≈2853 cm−1 can be associatedwith
asymmetric aswell as symmetric C–Hstretching ofmethylene [31, 32]. The notable band centered at
≈1586 cm−1 lies in theC–C in-ring stretching region of aromatics [2], but is also related to asymmetric−COO
stretching that combinedwith a symmetric stretching band at≈1401 cm−1 can be attributed to carboxylate
compounds [30]. A low-intensity C=Ocarbonyl stretching band can also be noted at≈1738 cm−1. It is
accompanied by a low-intensity C–O–C stretching vibration band at 1254 cm−1 that can be attributed toO-
acetyl ester [31]. The intense band at≈1021 cm−1 has been attributed toC–OandC–OHbonds in glucan units
in polysaccharides, while the shoulder at≈1041 cm−1 can be attributed to pectin side chains [31, 32]. The bands
in the region 700–515 cm−1 have been associatedwith alkynes and alkyl halides [2].

3.3. Complex impedance analysis
Themeasured impedance (|Z|=R+ jX,Z′=R is resistance,Z″=X is reactance) and phase angle of Aloe vera
samples are shown infigure 4. According to the shape of the impedance curve, the Aloe vera sample behaves like
a solid-statematerial: ceramic, powder, or electrolyte decreasing as the frequency increases [21–23].

TheNyquist plot ofmeasured complex impedance of Aloe vera leaf sample in the frequency range 8Hz—5
MHz is shown infigure 5 and resembles the shape of complex impedance spectra of solid statematerials [21].
Joczak et al [25] concluded that plant tissue impedance in the frequency range 10Hz—1MHz is influenced by
cellmembrane capacitance, intracellular (symplastic) resistance, and intercellular (apoplastic or extracellular)
resistance. They proposed different electrical circuits tomodel themeasured impedance, to take into account
these influences. Complex impedance spectra of solid-statematerials are commonly analyzed using the
‘brickwork’model of grain, grain boundary, and electrode-interface regions in themeasured frequency range
[21, 27]. Each region ismodeledwith a parallel resistance/capacitor element, representing one semicircle in the
complex impedancemeasurement data semicircles [21]. However, in polycrystalline samples, these semicircles
often overlap and are not ideal [33, 34]. If the semicircle center is below the x-axis, this is due to non-ideal type
Debye behavior, and a constant phase element (CPE) is used to replace the capacitance component in the parallel
circuit [24, 31]. The impedance function of aCPE is [33]:

( ) ( )w= - -Z A j 1CPE CPE
n1

Figure 3. FTIR spectrumof a freeze-dried Aloe vera leaf sample.
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whereω= 2πf-angular frequency, f -applied frequency,ACPE -constant independent of frequency ( f ) and n-an
exponential index representing the semicircle arc depression.

Themeasured complex impedance of Aloe vera has three different regions (figure 5). A small semicircular
arc at high frequencies can be noted, followed by a larger part of a semicircular arc in the lower frequency region.
If we assume that theAloe veramicrostructure resembles a ceramic samplemicrostructure with grains and grain
boundaries, the small semicircle in the high-frequency region can bemodeledwith a parallel R/CPE
representing the grain contribution, while part of the semicircle arc in the lower frequency region can be
modeledwith a parallel R/CPE representing the grain boundary contribution, as shown infigures 5 and 6. The
complex impedance in the lowest frequency region also reflects the influence of the electrode-interface
component that in our case is due to the Aloe vera rind contact with the sample holder copper electrode.

Analysis and simulation of themeasured complex impedance spectra were performed using the EIS
SpectrumAnalyzer software [35] and an equivalent electrical circuit reproducing the influences of grains and
grain boundaries on the complex impedance in the frequency range of 100Hz—5MHz. The complex
impedance data in themeasured range 8–100Hzwas the part that reflected the influence of the electrode
interface andwe did notmodel it as it was too small to be able tofit with amodel, though its shape of a low
frequency ‘electrode spike’ roughly under a 45 ° angle could indicate infiniteWarburg-type ionic diffusion [21].
Good agreement between experimental and fitted data was obtained as shown infigure 6. The values of the
electric circuit parameters were derivedwith a fitting error below 2%.The obtained resistance of grain/grain
boundary andCPE element values are given in table 1. The real values of grain/grain boundary capacitancewere

Figure 4.Change of impedance |Z| (a) and phase (b)with frequencymeasured on anAloe vera leaf sample.

Figure 5.Measured complex impedance of Aloe vera leaf sample, insets: opticalmicroscopy image recorded of a leaf cross-section and
illustration of a polycrystalline grain boundarymicrostructure.
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calculated as [22]:

( · ) ( )( )= - - /C A R 2CPE CPE
n n1 1

whereR,ACPE, and n are grain or grain boundary resistance andCPEparameter values determined from the
appliedmodel, respectively. It is interesting to observe that the determined capacitance value for grains (Cg) is
72.18 pF and lower than for grain boundaries (Cgb= 50.65 nF) and in linewith grain and grain boundary
capacitance values (pF and nF) obtained for solid-statematerials, such as ceramics, nanoparticles or solid-state
electrolytes [21, 22, 36, 37]. The determined grain boundary resistance (Rgb) is alsomuch higher than the
determined grain resistance (Rgb), so the grain boundaries showhigher capacitive and resistive properties than
grains in agreementwith themicrostructure of the Aloe verafillet, as shown infigure 2where the cell walls
represent grain boundaries and the gel represents grains. Thus, the greater number of grain boundaries observed
inmicrostructure could contribute to larger resistance, while charge carriers accumulate at the grain boundaries
causing larger polarization.

3.4.Dielectric properties and conductivity
The complex permittivity was calculated as [22]:

| | | |
( )e

w
e

w
¢ =  =

X

Z C

R

Z C
, , 3

2
0

2
0

whereR andX are themeasured real and imaginary components of impedance, |Z|= +R X ,2 2 C0 is the
capacitance of the corresponding air gap parallel plate capacitorwith dimensions the same as themeasured
sample determined asC0= (a2/d)·π·ε0, with a

2
—the sample surface, d—sample thickness and ε0 - permittivity

of free space of vacuum. The loss tangent tg δwas determined as: ε″/ε′. The dependence of dielectric parameters
with frequency is similar to conventional synthesizedmetal-based compounds/oxides/dielectrics as shown in
figure 7.Dispersion accompanied by rapid fall in ε′ and ε″ in the low-frequency region can be observed showing
that electrons can follow the applied signals up to a certain frequency forming the polarization [38]. As the
frequency increases the electrons are unable to get in sync and lag behind the applied field [39]. Hence the

Figure 6.Measured complex impedance data inNyquist plots,fitted and simulated curves obtained for Aloe vera leaf sample using the
applied equivalent circuit consisting of grain and grain boundary components.

Table 1.Grain and grain boundary resistance, CPE equivalent circuit parameters, capacitance, frequency, and time
for Aloe vera sample.

R (MΩ) ACPE n C (F) f (Hz) τ (sec)

Grain 0.403 5.6193 · 10–10 0.8035 72.18 · 10−12 34325.35 2.913 · 10−5

Grain boundary 66.42 9.952 · 10−10 0.8009 50.65 · 10−9 29.71 0.03365
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polarization suffers reduction, and so do the permittivity components ε′ and ε″. For ceramics and powder
samples, this trend has been explained by interfacial polarization attributed to an inhomogeneous
microstructure and also charge carrier accumulation at boundaries between regionswith conductive grains and
resistive grain boundaries [22]. The dielectric loss tangent has amaximum similar to the ones noted before for
solid-statematerials when the frequency of hopping charge carriers corresponds to the external frequency
field [22].

The trend of the dielectric constant is also consistent withmorphology and EIS-derived parameters.
According toMaxwell–Wagner, grain boundaries are prominent at low frequencies and offer resistance to an
appliedfield. The grains are prevalent at high frequencies and assist conductivity. The larger values of Cgb and
Rgb (table 1) causemaximumdielectric constant, Z′ andZ″ values at low frequencies (figures 4 and 7). In the
high-frequency regime, lowCg andRg reduce ε′/Z″ andZ′ respectively (figure 4). Consequently, there is
consistency amongmeasured intrinsic parameters,morphology, and EIS-derived simulated parameters.

In the case of conductivity, theAloe vera sample conductivity was determined as:

·
·| |

( )s
e

=
R

C Z
40

0
2

where:C0 is the capacitance of the corresponding air gap parallel plate capacitorwith dimensions the same as the
measured sample, and ε0 is the permittivity of free space of vacuum, as described in equation (3), whileR is the
measured resistance component of the impedance, and |Z| is thempedance calculated as described in
equation (3). The calculated conductivity changedwith frequency, as shown infigure 8.

According to the Jonscher power law it can be expressedwith the following relation [40]:

( ) · ( )s s w= +f A 5DC
s

whereσDC—is theDC conductivity,Aωs- is theAC conductivityσAC, whileA and s are constants that depend on
the temperature and composition of the sample. TheDC conductivity (σDC)was determined as 4.02E−5

(Ωm)−1, pre-exponential factor (A) as 7.31 E−9, and the frequency exponent (s) as 0.92 (values lie between 0 and
1 [22]). The value of 0< s< 1 signifies thewidely observed behavior in disorderedmaterials (solid-state
materials, ceramic samples, ionic electrolytes, ionic conducting glasses, conducting polymers, amorphous
semiconductors) associatedwith hopping conduction known as ‘the universal dynamic response’ [33, 40–43].
The determined value for s of 0.92 shows the hopping behavior of charge careers of Aloe vera. The plot is
characterized by aflat plateau in the low-frequency regime related toσDC and dispersion at high frequencies
termed the frequency-dependent conductivity. Themechanismof conductivity in the frequency domain can be
associatedwith the relaxation of the ionic atmosphere accompanied bymobile charge carriers [44]. The variation
of conductivity is in agreementwith the ε′: a high dielectric constant in low-frequency region accounts for strong
dielectric polarization (high ε′)which is attributed to lowDC conductivity and lower polarization (low ε′) in a
high-frequency regime causes largeσAC.

Figure 7. Frequency dependence of the dielectric constant (ε′) - (a) and loss tangent (tgD) - (b) determined using equation (3) for
measured Aloe vera leaf sample.
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3.5. Electricmodulus
The complex electricmodulus can be defined as the inverse of complex permittivity ε* [45]:

( ) ( ) ( )e e e
e

= - = ¢-  - ¢ =
¢

e¢ + e¢¢
¢¢ =

e¢¢
e¢ + e¢¢

* *M M M1 i 1, thus and 6
2 2 2 2

whereM′-real part,M′′-imaginary part ofM*. BothM′ andM′′ reveal the electrical transportmechanism
associatedwith carrier/ion hopping and differentiate grain boundary conduction from electrode polarization.
The electricalmodulus is utilized to explore the electrical phenomenon due to small capacitance of thematerial.
Analysis of the change of electricmodulus with frequency enables a better insight into the conductivity
relaxation process of the analyzedmaterial. It also evaluates the electrical relaxation in ionic solids, as the
modulus change can be associatedwith the decay of the electric field under the influence of a constant dielectric
displacement [45, 46]. The determined change ofmodulus with frequency is shown infigure 9.

Both real (M′) and imaginary (M′′) components of the electricmodulus increase as the frequency increases
from8Hz to 5MHz. They are low in the low-frequency regime and this indicates a small contribution of
electrode polarization that can be connectedwith the long-rangemobility of charge carriers [47]. After 1KHz,
we can observe a rapid increase inM′ towards saturation associatedwith the contribution of grains (intra-grain)
at high frequencies. It agrees with the fact that the conduction process is dependent on the short-rangemobility
of charge carriers [48]. It plausibly relates to the lack of restoring force responsible for themobility of charge
carriers due to the induced electric field.

Figure 8. Frequency dependence of electrical conductivity determined using equation (4) formeasuredAloe vera leaf sample.

Figure 9. Frequency dependence of real (M′) and imaginary (M″) component of electricmodulusM* determined using equation (6)
for Aloe vera leaf sample.
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The plot ofM′′ demonstrates a peak lying in themiddle of the frequency region centered around 10KHz and
a steep rise is observed inM′′ after the trailing edge of the peak. The territory from low to a high-frequency region
of theM′′ peak relates to the changeover from long-rangemobility to a short-range one. In the low-frequency
region, charge carriers havemobility along large distances, and small-distancemobility is present in the high-
frequency region.More specifically, we can see a noticeable semicircle in the lower frequency region that reflects
the grain boundary influence in the formof a depressed semicircle, and higher values in the higher frequency
region. The asymmetric and broad nature of the semicircle confirms non-Debye relaxation behavior. It is
noteworthy that trends ofM′,σ and ε′ agreewith each other.High polarization in the low-frequency regime
causes large ε′, low conductivityM′ andσdc, and vice-versa.

The determined loss tangent for Aloe vera leaf sample (figure 7) shows one full relaxation peak at frequencies
(100Hz–100 kHz) and the leading part of a second partial relaxation peak at high frequencies (100 kHz–5MHz).
Analysis of theNyquist plots of electricmodulus (M′-M″) enables better discrimination between electrode
polarization and grain boundary conduction processes [49], as shown infigure 10.

In theM′-M″ plots, conductivity relaxation due to the semi-circle observed in the low-frequency region is
responsible for thefirst peak of the loss tangent, thus grain boundaries contribute to this relaxation: as
mentioned before, the low frequency electron ‘spike’noted in the frequency range 8–100Hz in Z′(R)-Z″(X)
plots (figure 5) is due to electrode polarization. The observed grain boundary relaxation is non-Debye type due
to its asymmetric naturewith the center lying below the x-axis. The leading part of the second partial peak of loss
tangent displayed at high frequencies is associatedwith the small semicircle arc in the high-frequency regime of
Nyquist plots (figure 6), where the grains are responsible for dielectric relaxation. It is also observed thatNyquist
plots display relatively strong conductivity relaxation inM′-M″ plots than dielectric relaxation forZ′-Z″ plots.
This relates to the complete relaxation peak of tanδ in the former and partial relaxation peak in the latter.

Aloe vera, as a succulent plant, can survive for a long durationwithout watering. In the electronic/electrical
domain, energy can be stored either in the formof an electricfield or amagnetic field. In Aloe vera, the leaf
constituents (composed of parenchyma cells, vascular bundles and other internal tissue of the rind that
according to analysis ofmeasured FTIR spectra—figure 3, constitute the same functional groups) have different
shapes and the parenchyma cells constitute thin cell wall/grain boundaries with possible dimensions of the
order of 300–400μm [6]. These cells execute essential activities viz-a-viz storage, secretion, photosynthesis,
transport of water, etc. Grain boundary capacitance (Cgb) of 50.65 nF associatedwith polarization formed at the
grain boundarywas determined (table 1). The charge carriers can accumulate at the grain boundaries and form
polarization, thereby creating capacitance. Thus, the thin cell/grain boundaries of parenchyma cells could help
to store the energy in the formof an electric field (capacitance). These cell/grain boundaries do not let the stored
energy/capacitance discharge owing to considerableRgb= 66.42MΩ or large time constant τ (table 1). Hence,
Aloe vera as a succulent plant could possibly store energy in an electric field created by parenchyma cells for a
certain time period, which could be equivalent to its water storage retention capability. This requires further
research andmeasurements of leaf sections of different Aloe vera plants and in different conditions over longer
periods of time. Life-time, stability criteria and performance capabilities need to be taken into account.

Figure 10.Complex electricmodulus determined using equation (6) for Aloe vera leaf sample.
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4. Conclusion

In this work, we havemeasured and analyzed the complex impedance of freshly cut leaf sections of the Aloe vera
plant.Measured FTIR spectrumof the freeze dried leaf section enabled identification of functional groups of the
cell wall structure. The complex impedance, dielectric, and electricmodulus properties of Aloe vera plant leaf
internal structure have been correlatedwith grain and grain boundary components usual for solid-state
materials, showing non-Debye dielectric/conductivity relaxation behavior. The role of grain boundaries that
could be associatedwith parenchyma cells has been describedwith the help of circuitmodeling enabling an
electrical explanation for thewater retention ability of plants. This work is a contribution to the better
understanding of this naturalmaterial from an electrical viewpoint and as a natural organic dielectric, to further
their electronic application.
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