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Abstract 

Deforestation, urban development, and global climate change can lead to dramatic changes of ecological 

communities and increase prevalence of infectious diseases at higher latitudes and altitudes. Identification 

offactors responsiblefor the prevalence of parasites is of crucial importance to understand the dynamics of parasite 

distribution in a changing environment. Mountain areas are especially suitable for studies offactors governing 

parasite distribution and prevalence due to heterogeneity of landscapes, climatic regimes, and other biotic and 

abiotic conditions. We examined 903 avian blood smears collected in mountains of Transcaucasia for prevalence 

of Haemoproteus and Plasmodium. We found that the haemoparasites prevalence differed among bird species and 

localities, highlighting the environmental components affecting disease distribution. The prevalence of both 

Haemoproteus and Plasmodium was significantly higher in males, adults, and migratory species than in females, 

juveniles, and resident species. Geographic Information System (GIS) and linear regression analyses revealed that 

elevation and monthly average precipitation were strongly correlated with proportion of infected birds with 

Plasmodium, indicating that the prevalence increased with increase of monthly average temperature and elevation. 

Birds from forested and high grassed areas were also more infected with avian haemosporidia. Our study provides 



 

 

baseline data for modelling of parasites distribution under global climate change scenarios, which is of great 

importance for monitoring and management of communities and environment for conservation and human health. 
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Introduction 

Malaria and related Haemosporidia are highly virulent pathogens of a wide range of vertebrates and are especially 

diverse in birds (Valkiunas 1997). Avian Haemosporidia are key models for studying the dynamics of naturally 

occurring infections under different biotic and abiotic conditions, 

including environmental, behavioural etc. (Benning et al. 2002; Garamszegi 2011; Aghayan 2012). In spite of 

their importance, the processes responsible for acquisition, control and suppression of malaria infections remain 

poorly understood (Videvall et al. 2015). Our knowledge about the environmental factors affecting the distribution 

of avian Haemosporidia is especially limited (Illera et al. 2017). 

Avian Haemosporidia are protozoans of the genera Plasmodium, Haemoproteus and Leucocytozoon which 

need intermediate avian hosts and arthropods to complete their life cycle. Many studies have examined this 

obligate relationships between blood parasites and their hosts such as condition or sexually selected traits and 

many aspects of the biology of Haemosporidia and their interactions with hosts (Bennett et al. 1980; Ricklefs et 

al. 2004; Fallon et al. 2005; Morand et al. 2006). This in turn provides a rich dataset to understand host-parasite 

interactions also touching evolution, biogeography and ecology of the parasites. Recently, it has been shown that 

interactions between host and parasites also vary among genera of parasites (Bensch et al. 2007; Drovetski et al. 

2014), suggesting that genera can differently react to the same biotic and abiotic factors (Dawson and Bortolotti 

1999; Illera et al. 2017). 

Climatic variables were also reported to have an influence on distribution of haemosporidian parasites and their 

invertebrate vectors (Zhou et al. 2007; Paaijmans et al. 2010; Garrett et al. 2013; Ehrmann et al. 2017). Majority 

of studies on how climatic and other variables affect avian malaria distribution are related to single host species 

or communities inhabiting limited landscapes like forests, deserts etc.. However, studies oncommunity level 

usinghighernumberofsamples and more climatic variables are lacking (Laurance et al. 2013; CaleroRiestra and 

García 2016; Marzal et al. 2016). Due to the heterogeneity of climatic and habitat conditions, mountains are well-

suited systems to disentangle environmental factors driving distribution of parasites (Zamora-Vilchis et al. 2012; 

Meléndez et al. 2014). 

Thus, the goal of the current study is to determine factors affecting prevalence of avian Haemoproteus and 

Plasmodium parasites using bird communities and mountainous landscapes of Transcaucasia. Our study area 

contains various landscapes including semi-desert to forests, subalpine belt and elevation varying from below 600 

m up to 2600 m above sea level 

(a.s.l.). This study area represents an ideal system to test the effect of different environmental variables on 

parasites’ distribution (Illera et al. 2017; Padilla et al. 2017). We used microscopy method to investigate intensity 

and prevalence of avian Haemoproteus and Plasmodium in 903 individual birds sampled during the 2013–2014 

breeding season. Microscopy was reported as an adequate technique to study distribution and prevalence of 

parasites (Valkiūnas et al. 2008). According to published literature climatic variables such as temperature, are 

better predictors of parasites distribution then type of the landscape. The latter is explained by climate playing a 

major role in vector abundance (Watts et al. 1987; Chaves et al. 2011; Pérez-Rodríguez et al. 2013). 

Thus we want to improve knowledge on environmental biotic and abiotic predictors of parasites distribution 

using mountainous landscapes of Transcaucasia and avian Haemoproteus and Plasmodium as a model system. 

 



 

 

Materials and methods 

Sampling 

We collected 903 blood samples of 90 avian species at l5 localities in the Lesser Caucasus (Armenian Highlands) 

in April–July 2013 and 2014 (Online resource 1). In our study, birds hatched in the current year were considered 

as juveniles and comparison was conducted between those and other individuals. Birds were captured with mist 

nets. Each mist net was opened for 2–3 days in the same place. Blood samples were obtained by brachial 

venipuncture with a sterile needle and collected using a heparin-free glass capillary. Then the blood was 

transferred onto a glass slide with smearing and air-dried in the field. Afterwards, we fixed the smears in 100% 

methanol by immersing the preparation in the alcohol for about 5 min (Valkiunas 1997). 

We stained the smears with 10% Giemsa’s stain in a special container. The staining was performed for 30 min 

at a temperature of approximately 25 °C. After the staining, the slides were washed with water, air-dried, and 

examined with a light microscope. 

Microscopy 

We examined the smears first at low magnification (×400). Positives were examined under higher magnification 

(×1000) with an oil immersion objective (Valkiunas 1997). The intensity of parasitisation was calculated as the 

number of blood cells containing gametocytes of Haemoproteus spp. and Plasmodium spp. parasites per 10,000 

cells. At least 50,000 cells for each bird were examined (Valkiūnas et al. 2008). 

Data analyses and GIS application 

To determine how environmental biotic and abiotic factors affect avian malaria prevalence, we selected the 

following components which are the most suitable for mountainous landscapes (Muradyan et al. 2016; Illera et al. 

2017): 1) relief and its morphological characteristics including elevation, slope and aspect, 2) climatic conditions, 

including average monthly precipitation and temperature, and 3) vegetation condition based on Normalized 

Difference Vegetation Index (NDVI). 

Based on the digital elevation model (DEM) (https:// earthexplorer.usgs.gov/) (EarthExplorer 2018), we 

obtained derivative thematic elevation, slope layers and aspects of the territory of Armenia using the ArcGIS 10.1 

with 3D Analyst expansion module. Vegetation condition maps were obtained from Landsat OLI multispectral 

satellite image using NDVI (Muradyan et al. 2016). The NDVI is used for monitoring and assessing the vegetation 

condition (Kaufmanand Tanre 1992). In general, NDVI values range from −1.0 to 1.0, with negative values 

indicating clouds and water, positive values near zero indicating bare soil, and higher positive values of NDVI 

ranges from sparse vegetation (0.1–0.5) to dense green vegetation (0.6 and above). After this fixed range of 

densities (0.7) increase of the volume of green vegetation slightly increases the value of NDVI (Milich and Weiss 

2000). We used the temperature and precipitation data from Hydrometeorology and Monitoring State Service of 

Armenia SNPO, Ministry of Emergency Situations of the Republic of Armenia. With the input of GPS coordinates 

into GIS software the sampling points were set on the map and for each point the biotic and abiotic data were 

obtained (Table 1) and a GIS database was created. Collation between avian malaria prevalence and environmental 

components was done by a linear regression statistical method, which helped to establish correlation between 

these data. We used the GIS package ArcGIS 10.1, with expansion moduli 3D Analyst, Spatial Analyst (ESRI 

Inc.) for our spatial analysis. 

Table 1. Biotic and abiotic factors values and prevalence of infections by avian haemosporidians for each locality. 

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/


 

 

 

Results 

In total, over 43% of the 903 tested birds were infected by avian Haemoproteus spp. (n = 378) and Plasmodium 

spp. (n = 87). Out of them, 75 samples appeared to carry parasites belonging to both genera. The overall prevalence 

varied greatly among sampled avian species ranging from no positives in Troglodytes troglodytes to 72.7% in 

Sturnus vulgaris and Sylvia communis (Table 2). The prevalence of Haemoproteus spp. separately was higher in 

Sturnus vulgaris (72.7%) and lower in Troglodytes troglodytes with no positives. Twelve species had no 

Plasmodium in blood smears (Acrocephalus palustris, Chloris chloris, Erithacus rubecula, Hippolais languida, 

Hirundo rustica, Luscinia megarhynchos, Periparus ater, Remiz pendulinus, Sitta tephronota, Sturnus vulgaris, 

Sylvia borin, and Troglodytes troglodytes), however, the most infected species was Aegithalos caudatus with 

prevalence of 16.7%. In the calculation only species with sample size higher than 9 individuals were considered 

to escape coincidence (Table 2). 

 

Table 2. Prevalence of avian Haemoproteus and Plasmodium in individual bird species (sample size >9) 



 

 

 
 

Our results show that males were more susceptible to avian haemosporidia than females (p = 0.01). The 

prevalence was significantly higher in adults than in juveniles (p = 0.0001). Additionally, Fisher Exact Probability 

Test also showed that migrants were more infected than resident birds (p = 0.01) (Fig. 1). 

 
Fig. 1 Number of infected birds by host age, sex and migratory behaviour. N – number of birds, Inf – number of infected birds, Res – 

resident birds, Mig – migratory birds, M – male, F – female, Juv – juveniles, Ad – adults 



 

 

 

The prevalence of avian haemosporidian parasites differed among localities (Table 1). Among localities with 

≥10 samples, the lowest prevalence was observed in Armavir (18%; n = 9/49) and the highest one in Tatev (80%; 

n = 40/50). The highest prevalence of both Haemoproteus and Plasmosium was in Tatev (80% and 18%, 

respectively). The lowest prevalence of Haemoproteus was recorded in Armavir (16%) and no Plasmodium was 

reported from Zuar (n = 0/33). 

To better understand differences in prevalence of haemosporidia among localities we selected seven bird 

species (Carduelis carduelis, Cettia cetti, Dendrocopos major, Fringilla coelebs, Parus major, Passer montanus 

and Turdus merula) sampled in at least two localities with sample size greater than 10 individuals and from each 

locality having at least 6 blood samples. Utilizing Fisher exact test for 2 × 2 and To highlight the abiotic and biotic 

factors contributing to 2 × 3 tables, we found that in 3 of 7 species the prevalence was significantly varying among 

localities (Table 3). To highlight the abiotic and biotic factors contributing to avian malaria prevalence, we 

conducted GIS analyses and found that the prevalence of Plasmodium was significantly positively correlated with 

elevation and precipitation (Table 4). There was a marginally significant (0.05 <p < 0.1) positive correlation 

between NDVI and aspect and Plasmodium prevalence. We have also observed high correlation (0.4- >r > 0.4) 

between overall haemosporidian prevalence and precipitation and slope, Haemoproteus prevalence and slope, 

Plasmodium prevalence and temperature (negative correlation), but none of them was significant or marginally 

significant (p >0.1). 

 

Table 3. Prevalence of avian haemosporidians in selected bird species (sample size >9 and presented in >1 localities and sample 

size in each locality >5) from different localities 

 
 

Table 4. Correlations of environmental components and haemosporidian prevalence (only localities with sample size >5 are included) 

 
 



 

 

Discussion 

Infections with avian haemoparasites cause disease in birds (Jarvi et al. 2003; DeGroote and Rodewald 2010; 

Podmokła et al. 2017), and sometimes they are lethal (Atkinson et al. 2000; Freed and Cann 2013; Asghar et al. 

2015). During the past decade, the global climate change caused profound and complex changes in the prevalence 

or severity of infectious diseases (Altizer et al. 2013; Garrett et al. 2013), and it is highly important to determine 

factors contributing to prevalence of diseases (Padilla et al. 2017). The latter is more suitable to be investigated in 

the mountainous landscapes as they provide variety of habitats, climatic, and other environmental conditions 

(Illera et al. 2017). 

Our results show significant role of sex, age and migratory behaviour of birds in the prevalence of infection 

with avian Plasmodium and Haemoproteus, particularly suggesting that prevalence is higher in males, adults and 

migrants than in females, juveniles and resident birds. Interestingly, all three mentioned factors were also shown 

to be related to prevalence of parasites (Bennett et al. 1980; Dunn et al. 2011; Jenkins et al. 2012; Isaksson et al. 

2013; Karadjian et al. 2013; Rivera et al. 2013; Kulma et al. 2014; Calero-Riestra and García 2016; Annetti et al. 

2017; Freeman-Gallant and Taff 2017). Bennet et al. (1980) stated that migratory birds carry more avian 

haemosporidian infections than native resident birds in Jamaica, but in contrast to our results they found identical 

prevalence in adult and young birds. In a microscopy-based study of Haemosporidia in the American kestrel (Falco 

sparverius Linnaeus, 1758), Dawson and Bortolotti (1999) showed for females a trend to have more mixed 

infections or double infection than males, however, they did not find significant differences in overall parasite 

prevalence between the sexes. The authors also found no difference in overall prevalence between young and adult 

birds, when young birds included individuals in their second year. In our study, birds of the first year were 

considered as juveniles and comparison was conducted between those and other individuals. In the same way 

Karadjian et al. (2013) by studying Haemoproteus syrnii in tawny owl (Strix aluco Linnaeus, 1758) from France 

showed 60% prevalence of haemosporidian infection in adults and 3% in juveniles, supporting our finding. Our 

results on juveniles being less infected could be explained by increasing exposure of aging hosts to vectors that 

transmit infections (Kataoka et al. 2017). Similar to our results, prevalence of infection was highly variable 

between species and sampling localities in other studies (Baker 1975; Drovetski et al. 2014; Soares et al. 2016; 

Ellis et al. 2017). To better describe the role of sex and age in prevalence of infection, more experimental studies 

with involvement of the same bird species inhabiting the same locality are required (Dimitrov et al. 2015; 

Matthews et al. 2016; Granthon and Williams 2017). The factors in a locality include components of the 

environment such as vector abundance (Svobodová et al. 2014), bioclimatic conditions (da Amaral et al. 2017) 

and their change (Fuller et al. 2012; Spurgin et al. 2012; Cornuault et al. 2013). Unfortunately, during the current 

study we have not obtained data on vector abundance in the study sites, but by utilizing GIS techniques we were 

able to test some environmental biotic and abiotic factors that affect the prevalence of the avian parasites. We 

found that prevalence of Plasmodium spp. was significantly varying with precipitation and elevation changes and 

showed marginally significant relationship to NDVI and aspect. The other tested correlations were not significant. 

Similarly to our investigation, Illera et al. (2017) studied factors determining prevalence and richness in avian 

haemosporidians (Plasmodium, Haemoproteus and Leucocytozoon) at the community level along elevation 

gradients in two mountain ranges located around the northern and southern limits of the Iberian Peninsula, Spain. 

Examining 1460 breeding birds of 68 species they demonstrated an important role of climatic and landscape 

variables in explaining prevalence and species spectrum of the avian parasites in the Iberian mountains. 

Particularly, they showed Haemoproteus affinities to woodland areas. This result was supported by Laurance et 

al. (2013) who stated that the prevalence of Haemoproteus was higher in continuous forests rather than in 

fragmented areas, which could be explained first of all by higher vector abundances (Zhou et al. 2007; Mangudo 

et al. 2017). The latter was shown also to be significantly dependent on elevation, vegetation and distance from 

water reservoirs (Zhou et al. 2007; Chaves et al. 2011; Liao et al. 2017). However, in contrast to vector abundance 

which is shown to decrease with higher altitude, our results indicate that the prevalence of avian haemoparasites 

was positively correlated with increasing elevation. This could be explained by the fact that animals were more 



 

 

susceptible to infection by haemoparasites at lower temperature, oxidative stress and lower food availability 

(Álvarez-Ruiz et al. 2018), showing vulnerability of higher elevation inhabitants to parasites. 

Our results highlight the predictors of avian Haemoproteus and Plasmodium prevalence in mountainous 

landscapes providing baseline for modelling distribution of the parasites under global warming scenarios 

(Gonzalez-Quevedo et al. 2014; Liao et al. 2017), which is of crucial importance from environmental, conservation 

and human health perspectives (Reiter and LaPointe 2007; Aghayan et al. 2013; Atkinson et al. 2014; Abella-

Medrano et al. 2018). 
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