Faculty of Technology University of Novi Sad

9th Students' Meeting and 2nd ESR COST MP0904 Workshop

Book of Abstracts

SM2011 COST SIMUFER

Novi Sad, Serbia, November 16-18, 2011

CONFERENCE for YOUNG SCIENTISTS

The Ninth Students' Meeting, SM-2011 The Second ESR Workshop, COST MP0904

PROGRAMME and BOOK OF ABSTRACTS

November 16-18, 2011 Novi Sad, Serbia Programme and Book of Abstracts of the Conference for Young Scientists (The Ninth Students' Meeting - SM-2011, and The Second ESR Workshop, COST MP0904) publishes abstracts from the field of ceramics, which are presented at traditional international the Conference for Young Scientists.

Editors-in-Chief

Prof. Dr. Vladimir V. Srdić Prof. Dr. Liliana Mitoseriu

Publisher

Faculty of Technology, University of Novi Sad Bul. cara Lazara 1, 21000 Novi Sad, Serbia

For Publisher

Prof. Dr Zoltan Zavargo

Printing layout

Ivan Stijepović, Stevan Ognjanović, Saša Vulić

Press

VERZAL, Novi Sad, Serbia

CIP - Каталогизација у публикацији Библиотека Матице српске, Нови Сад

666.3/.7(048.3)

STUDENTS' Meeting Processing and Application of Ceramics (9; 2011; Novi Sad)

Programme and book of abstracts / The Ninth Students' Meeting Processing and Application of Ceramics SM-2011 and the Second Early Stage Researchers Workshop, COST MP0904 Single- and Multiphase Ferroics and Multiferroics with Restricted Geometries, November 16-18, 2011, Novi Sad; [editors-in-chief Vladimir V. Srdić, Liliana Mitoseriu]. - Novi Sad: Faculty of Technology, 2011 (Novi Sad: Verzal). - XIV, 140 str.: ilustr.; 24 cm

Tiraž 170. - Registar.

ISBN 978-86-80995-97-7

- 1. Early Stage Researchers Workshop, COST MP0904 Single- and Multiphase Ferroics and Multiferroics with Restricted Geometries (2; 2011; Novi Sad)
- а) Керамика Технологија Апстракти COBISS.SR-ID 267380231

L. Mahnicka, R. Svinka, V. Svinka POROUS MULLITE CERAMICS FORMATION AND MODIFICATION WITH SOME ADDITIVES	47
P. Gdaniec, B. Kusz APPLICATION OF VARIOUS PORE-FORMERS FOR CERAMIC MATERIALS	48
M. Kodols, S. Didrihsone, J. Grabis Bi ₂ WO ₆ PHOTOCATALYST NANOPOWDER SYNTHESIS AND PHOTODEGRADATION OF MB	49
J. Pantić, M. Prekajski, B. Matović, Z. Baščarević, A. Kremenović SPHENE BASED CERAMIC	50
K. Gdula-Kasica, M. Gazda CHARACTERIZATION OF DOPING INFLUENCE ON BARIUM CERATE PROPERTIES	50
ZV. Mocanu, A. Ianculescu, L. Petronela Curecheriu, L. Mitoseriu INVESTIGATION OF La-DOPED BaTiO ₃ CERAMICS PREPARED BY ALTERNATIVE METHODS	52
J.D. Bobić, M.M. Vijatović Petrović, J. Banys, B.D. Stojanović NIOBIUM DOPED BARIUM BISMUTH-TITANATE CERAMICS	53
T. Kainz, M. Naderer, D. Orosel, D. Schütz, F. Mittermayr, K. Reichmann STUDY OF THE FORMATION REACTION OF LEAD-FREE (1-x)BNT-xBKT CERAMIC	54
M. Vuković, M. Žunić, Z. Branković, G. Branković FINE GRAINED VARISTORS PREPARED FROM ZnO NANOPARTICLES	54
N. Horchidan, A. Ianculescu, L. Curecheriu, L. Mitoseriu CONTRIBUTIONS TO THE STUDY OF NON-LINEAR DIELECTRIC PROPERTIES OF BaTi _{1-x} Sn _x O ₃ CERAMICS	55
L. Kozielski MULTIFERROICS APPLICATION – MAGNETIC CONTROLLED PIEZO- ELECTRIC TRANSFORMER	56
D. Schütz, W. Krauss, A. Feteira, M. Deluca, K. Reichmann BNT-BASED MULTILAYER DEVICE WITH LARGE AND TEMPERATURE INDEPENDENT STRAIN	57
S.S. Slavov, E.P. Kashchieva, S.B. Parvanov, Y.B. Dimitriev CONDUCTIVITY, DIELECTRIC LOSES AND DIELECTRIC PERMITTIVITY DEPENDING ON THE TEMPERATURE OF BISMUTH TITANATE CERAMICS AND GLASS-CERAMICS, CONTAINING SiO ₂ AND Nd ₂ O ₃ AS ADDITIVES	58
M. Pilch, K. Szot, J. Szade, W. Speier, R. Waser SrTiO ₃ + La THIN FILMS AND ITS POTENTIAL APPLICATION	59
S. Perko, A. Dakskobler, T. Kosmac DENSIFICATION AND STRENGTH OF POROUS Y-TZP CERAMICS	60

J. Banys BROADBAND DIELECTRIC SPECTROSCOPY OF FERROELECTRICS AND RELATED MATERIALS	
FERROICS & MULTIFERROICS, COST-ESR	Mitoseriu xO3 CERAMICS 112 SSED AT LOW 113 R. Freer, Ca _(1-x) Nd _{2x/3} TiO ₃ 114 114 115 ć, P. Bowen MILLING 116 IC CERAMIC 117 NERGY 118 FABRICATION 120 NG ZONE PARAMETERS 120 THE ROLE OF 121
N. Horchidan, A. Ianculescu, L. Curecheriu, V. Musteata, L. Mitoseriu DIELECTRIC AND NONLINEAR PROPERTIES OF BaTi _{1-x} Sn _x O ₃ CERAMICS PREPARED BY SOLID STATE METHOD.	12
R. Frunza, G. Canu, B. Malic, M. Kosec TRANSPARENT OXIDE THIN FILMS FROM SOLUTIONS PROCESSED AT LOW TEMPERATURES	13
R. Lowndes, F. Azough, M. Deluca, J. Shackleton, R. Cernik, R. Freer, P. Supancic CONTROL OF THE MICROWAVE DIELECTRIC PROPERTIES OF $Ca_{(1-x)}Nd_{2x/3}TiO_3\dots$	14
M. Kachlik, K. Castkova, K. Maca PROCESSING OF BULK Sr _{0,3} Ba _{0,7} TiO ₃ CERAMIC	14
M. Ivanov, S. Rudys, J. Banys, C. Bogicevic, JM. Kiat DIELECTRIC SPECTROSCOPY OF NANOGRAIN PSN CERAMICS	15
M.M. Vijatović Petrović, J.D. Bobić, J. Banys, B.D. Stojanović, P. Bowen BARIUM TITANATE PROPERTIES ENHANCED BY ATTRITION MILLING	16
C.E. Ciomaga, C. Olariu, C. Galassi, L. Mitoseriu FUNCTIONAL PROPERTIES OF PZT-NiFe ₂ O ₄ MAGNETOELECTRIC CERAMIC COMPOSITES DESCRIBED BY EFFECTIVE FIELD MODELS	17
J. Griffiths, R. Freer, F. Azough P-TYPE $\rm Na_xCo_2O_4$ -BASED THERMOELECTRIC CERAMICS FOR ENERGY GENERATION FROM WASTE HEAT	18
G. Stojanovic, N. Jerance, N. Samardzic, D. Vasiljevic INK-JET PRINTING ON FLEXIBLE SUBSTRATES AND SENSORS FABRICATION 12	20
P. Heijboer, M. Josse, M. Velazquez, P. Veber, M. Maglione TTB CRYSTAL GROWTH BY THE VERTICAL OPTICAL FLOATING ZONE METHOD: OPTIMIZATION OF ROD SINTERING AND GROWTH PARAMETERS 12	20
C. Larosa, A.P. Reverberi, P. Nanni COBALT NANOSTRUCTURES BY ELECTROLESS REDUCTION: THE ROLE OF SURFACTANTS AND COMPLEXING ANIONS	21
L.P. Curecheriu, L. Mitoseriu DC-ELECTRIC-FIELD DEPENDENCE OF DIELECTRIC CONSTANT IN FERROELECTRIC SYSTEMS	22

"The Ninth Students' Meeting", SM-2011 PROCESSING AND APPLICATION OF CERAMICS

Novi Sad, Serbia, November 16-18, 2011

A33

NIOBIUM DOPED BARIUM BISMUTH-TITANATE CERAMICS

J.D. Bobić¹, M.M. Vijatović Petrović¹, J. Banys², B.D. Stojanović¹

¹Institute for Multidisciplinary Researches, Kneza Viseslava 1, Belgrade, Serbia

²Faculty of Physics, Vilnius University, 9 Sauletekio str., Vilnius, Lithuania

Ferroelectric materials with diffuse phase transition (DPT) characteristics and/or relaxor properties have been exstensively studied in the last few decades mainly due to their very interesting and still not completely explained physical properties. According to that, the aim of our work is to investigate how niobium (Nb⁵⁺) as donor dopant influences on microstructure and electrical properties in relaxor BBT ceramics.

Dense pure and doped $BaBi_4Ti_{4-5/4x}Nb_xO_{15}$ (BBNT) ceramics (x=0, 0.05, 0.15, 0.30 mol) ceramics were prepared by conventional solid state reaction from appropriate oxide mixture. Dielectric properties were investigated in a wide range of temperatures and frequencies (Fig. 1). It is indicated that the temperature of dielectric constant maximum (T_m) of BBNT specimens significantly decreases with the increase of niobium content.

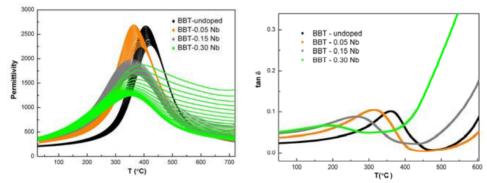


Figure 1. The temperature dependence of dielectric constant of pure and doped BBT at frequency range from 1 kHz to 1MHz and dielectric losses at 100 kHz

The dielectric relaxation rate follows the Vogel-Fulcher relation and fitting parameters which are measured at 100 kHz (T_{VF} , Ea, and f_o) are given in the table below.

Composition, x	$\varepsilon_{ m RT}$	<i>T</i> _m [K]	\mathcal{E}_{m}	Ea [eV]	$T_{\mathrm{VF}}\left[\mathrm{K}\right]$	f _o [Hz]
0	205	688	2430	0.023	660	$2.14 \cdot 10^9$
0.05	292	651	2424	0.204	555	5.61·10 ¹⁵
0.15	341	632	1770	0.040	594	$1.31 \cdot 10^{10}$
0.30	345	624	1300	0.001	621	$6.43 \cdot 10^6$

"The Second Early Stage Researchers Workshop" COST MP0904 - SIMUFER

Novi Sad, Serbia, November 16-18, 2011

References

- [1] C.H. Ahn, K.M. Rabe, J.-M. Triscone, "Ferroelectricity at the nanoscale: Local polarization in oxide thin films and heterostructures", *Science*, **303** (2004) 488–491.
- [2] J.M. Kiat, C. Bogicevic, F. Karolak, G. Dezanneau, N. Guiblin, W. Ren, L. Bellaiche, R. Haumont, "Low-symmetry phases and loss of relaxation in nanosized lead scandium niobate PSN", *Phys. Rev. B*, **81** (2010) 144122.
- [3] F. Chu, I.M. Reaney, N. Setter, "Spontaneous (zero-field) relaxor-to-ferroelectric-phase transition in disordered Pb(Sc_{1/2}Nb_{1/2})O₃", *J. Appl. Phys.*, 77 [4] (1995) 1671–1676.

M6

BARIUM TITANATE PROPERTIES ENHANCED BY ATTRITION MILLING

M.M. Vijatović Petrović¹, J.D. Bobić¹, J. Banys², B.D. Stojanović¹, P. Bowen³

¹Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia

²Faculty of Physics, Vilnius University, Lithuania

³Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Barium titanate powder was prepared by soft chemical process from polymeric precursors (modified Pechini process). The obtained BT powder was nanosized with primary particles \sim 74 nm, but factor of agglomeration (F_{agg}) pointed on existence of agglomerates \sim 6 µm. It is well known that agglomerates could influence on setback of materials structure and properties. In order to de-agglomerate nanopowder and to improve BT properties, attrition milling was performed.

Barium titanate powder was treated in attrition mill with zirconia media for 1h in 2% polyacrylic acid. Milling induced reduction of agglomerates in size and number. Characterization of both starting (BT) and milled (BTA) powders was performed. The comparison of obtained results showed enhancement of powders properties generated by attrition milling. To investigate the effect of milling on electrical properties of ceramics, both BT powders were uniaxially pressed and sintered at 1300°C for 8 h in air. The density of BTA ceramics was 95 % of theoretical value and 90 % of BT. Temperature dependence of relative permittivity showed three structural transitions characteristic for ferroelectric BT ceramics. The temperature transition from ferroelectric to paraelectric was found to be at 120°C for BT and 122°C for BTA. Dielectric constant value was around 6700 for BTA which is much higher value in comparison with non-treated BT where permittivity was 1340. Dielectric losses were below 0.03 for both BT ceramics.

"The Second Early Stage Researchers Workshop" COST MP0904 - SIMUFER

Novi Sad, Serbia, November 16-18, 2011

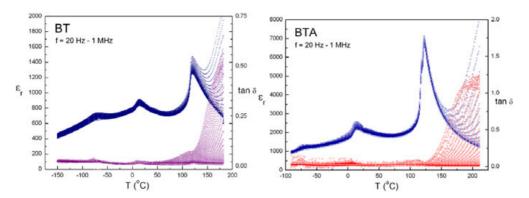


Figure 1 Dielectric properties of BT and BTA ceramics

References

- [1] O.P. Thakur, A. Feteira, B. Kundys, D.C. Sinclair, *J. Eur. Ceram. Soc.*, **27** (2007) 2577–2589.
- [2] S. Tusseau-Nenez, J.-P. Ganne, M. Maglione, A. Morell, J.-C. Niepce, M. Pete, *J. Eur. Ceram. Soc.*, **24** (2004) 3003–3011.
- [3] L. Wu, M.-C. Chure, K.-K. Wu, W.-C. Chang, M.-J. Yang, W.-K. Liu, M.-J. Wu, *Ceram. Int.*, **35** (2009) 957–960.

M7

FUNCTIONAL PROPERTIES OF PZT-NiFe₂O₄ MAGNETOELECTRIC CERAMIC COMPOSITES DESCRIBED BY EFFECTIVE FIELD MODELS

C.E. Ciomaga¹, C. Olariu¹, C. Galassi², L. Mitoseriu¹

¹Faculty of Physics, Alexandru Ioan Cuza University, Iasi, 700506, Romania ²ISTEC-CNR, Via Granarolo, no.64, I - 48018, Faenza, Italy

Magnetoelectric composites of $xNiFe_2O_4$ - $(1-x)Pb_{0.988}(Zr_{0.52}Ti_{0.48})_{0.976}Nb_{0.024}O_3$ (NFO-PZTNb) with x=2, 5, 10, 20, 30% were prepared by citrate-nitrate combustion using PZTNb-based template powders. To ensure a better connectivity of dissimilar phases, chemical methods for preparation of *in-situ* composites, followed by adequate sintering procedure was employed.

The dielectric constant of the composites decreases with the increasing the addition of x, as a consequence of the sum property. The dielectric responses show a Debye relaxation in the range of 10^2-10^4 Hz and a Maxwell-Wagner relaxation for frequencies below 10 Hz and the corresponding maximum is shifted with increasing of ferrite content to higher frequency. The magnetic properties were investigated. The initial permeability increased with increasing NFO content, which indicates that the